

Time : 3 Hours

Max. Marks: 48

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. State mean value theorem for definite integrals.
- 2. Evaluate $\int_{0}^{3} x^{2} dx$.
- 3. Define gamma integral.
- 4. What is Fubini's theorem (First form) ?

SECTION - B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

- 5. Evaluate $\sum_{k=1}^{4} k^2 3k$.
- 6. Show that Beta function is symmetric.
- 7. Find the average value of $f(x) = 4 x^2$ on [0, 3].
- 8. Find the area of the region enclosed by the parabola $y = 2 x^2$ and the line y = -x.
- 9. Prove that $\int_0^\infty e^{-ax} x^{n-1} dx = \frac{\Gamma(n)}{a^n} (a > 0; n > 0)$.
- 10. Find the area between $y = \sec^2 x$ and $y = \sin x$ from 0 to $\frac{\pi}{4}$.
- 11. Find $\frac{d^2y}{dx^2}$ if $x = t t^2$ and $y = t t^3$.

P.T.O.

K21U 3610

12. Evaluate $\int_0^1 \frac{2}{\sqrt{3+4x^2}} \, dx$.

13. Sketch the region of integration for the integral $\int_{a}^{2} \int_{x^{2}}^{2x} (4x + 2) dy dx$.

14. Find the length of the cardioid $r = 1 - \cos\theta$.

Answer **any 4** questions from among the questions **15** to **20**. These questions carry **4** marks **each**.

- 15. Use the inequality $\cos x \ge 1 \frac{x^2}{2}$, which holds for all x, to find a lower bound for the value of $\int_{0}^{1} \cos x \, dx$.
- 16. Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.
- 17. Find the area of the region in first quadrant that is bounded above by $y = \sqrt{x}$, and below by the x axis and the line y = x 2.
- 18. Find the length of the astroid $x = \cos^3 t$, $y = \sin^3 t$, $0 \le t \le 2\pi$.
- Find the average value of f(x, y, z) = xyz over the cube bounded by the coordinate planes and the planes x = 2, y = 2 and z = 2 in the first octant.
- 20. Find the tangent to the right-hand hyperbola branch x = sec t, y = tan t, $\frac{-\pi}{2} < t < \frac{\pi}{2}$ at the point $(\sqrt{2}, 1)$ where $t = \frac{\pi}{4}$. SECTION – D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

- 21. Show that $\beta(m, n) = \frac{\Gamma(m) \cdot \Gamma(n)}{\Gamma(m+n)}$.
- 22. Find the volume of the region D enclosed by the surfaces $z = x^2 + 3y^2$ and $z = 8 x^2 y^2$.
- 23. Find the centroid ($\delta = 1$) of the solid enclosed by the cylinder $x^2 + y^2 = 4$, bounded above by the paraboloid $z = x^2 + y^2$ and below by the xy plane.
- 24. Find the area inside the smaller loop of the limacon $r = 2\cos\theta + 1$.