

K21P 0784

II Semester M.Sc. Degree (CBSS – Reg./Suppl. (Including Mercy Chance)/Imp.) Examination, April 2021 (2017 Admission Onwards) MATHEMATICS MAT 2C 07 : Measure and Integration

Time : 3 Hours

Max. Marks: 80

PART – A

Answer any four questions from this Part. Each question carries 4 marks.

- 1. Show that if F is measurable and $m^*(F \Delta G) = 0$, then G is measurable.
- 2. Show that the Lebesgue measure of the set of irrationals in [0, 1] is 1.
- 3. Prove that outer measure is translation invariant.
- 4. If $f_n(x) = \frac{\log(x+n)}{2} e^{-x} \cos x$, then show that $\int_0^1 f_n(x) dx = 0$.
- 5. Let A, B be subsets of a set C, let A, B, $C \in \Re$ and let μ be a measure on \Re . Show that if $\mu(A) = \mu(C) < \infty$, then $\mu(A \cap B) = \mu(B)$.
- 6. Let p > 0 and $f \in L^p(\mu)$ where $f \ge 0$, and let $f_n = \min(f, n)$. Show that $f_n \in L^p(\mu)$ and $\lim \|f_n - f\|_p = 0$. (4×4=16)

PART – B

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks.

UNIT-I

- 7. a) For any sequence of sets $\{E_i\}$, prove that $m^*(U_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} m^*(E_i)$.
 - b) Show that, for any set A and any $\epsilon > 0$, there is an open set O containing A and such that $m^*(O) \le m^*(A) + \epsilon$.
 - c) If m*(E) < ∞ then prove that E is measurable if and only if, ∀ ε > 0, ∃ disjoint finite intervals, I₁, I₂, ..., I_n such that m^{*}(EΔ Uⁿ_{i=1} I_i) < ε.</p>

P.T.O.

K21P 0784

- 8. a) Prove that the class of Lebesgue measurable sets \mathcal{M} is a σ -algebra.
 - b) Let E ⊆ M where M is measurable and m(M) < ∞. Show that E is measurable if and only if m(M) = m*(E) + m*(M − E).
- 9. a) Prove that not every measurable set is a Borel set.
 - b) Let f be a non negative measurable function. Then prove that there exists a sequence $\{\phi_n\}$ of simple functions such that, for each x, $\phi_n(x) \uparrow f(x)$.

UNIT – II

- Define an integrable function. Prove that if f and g are integrable then f + g is integrable and ∫ f dx + ∫ g dx = ∫ (f + g) dx.
 - b) Let $\{f_n\}$ be a sequence of integrable functions such that $f_n \uparrow f$. Show that $\int f dx = \lim \int f_n dx$.
 - c) Let f be a non negative integrable function on [0, 1]. Then prove that there exists a measurable function φ(x) such that φf is integrable on [0, 1] and φ(0 +) = ∞.
- 11. a) Let f be a bounded function defined on the finite interval [a, b], then prove that if f is Riemann integrable over [a, b] if, and only if, it is continuous a.e.
 - b) Let f be bounded and measurable on a finite interval [a, b] and let $\varepsilon > 0$. Then prove that there exist
 - (i) a step function h such that $\int_{a}^{b} \left|f-h\right| dx < \epsilon.$
 - (ii) a continuous function g such that g vanishes outside a finite interval and $\int_a^b [f-g]\,dx < \epsilon.$
- 12. a) Let μ* be an outer measure on *H*(*R*) and let S* denote the class of μ* measurable sets. Then prove that S* is a σ-ring and μ* restricted to S* is a complete measure.
 - b) Prove that the outer measure μ* on *H*(*R*) defined μ on R and the corresponding outer measure defined by μ on S(*R*) and μ on S* are the same.

-3-

UNIT – III

- a) Let E and F be measurable sets, f ∈ L(E) and μ(E∆F) = 0 then prove that f ∈ L(F) and J_E f = J_E f.
 - b) Let f be a measurable function and let f = g a.e. (μ), where μ is a complete measure. Then prove that g is measurable. Further show that complete of μ is necessary.
 - c) Let $[X, S, \mu]$ be a measure space and f a non negative measurable function. Then prove that $\phi(E) = \int_E f d\mu$ is a measure on the measurable space [X, S]. Further prove that, if $\int f d\mu < \infty$, then $\forall \epsilon > 0$, $\exists \delta > 0$ such that, if $A \in S$ and $\mu(A) < \delta$, then $\phi(A) < \epsilon$.
- State and prove Holder's inequality. State and prove necessary and sufficient condition for equality occurs in Holder's inequality.
 - b) Let $0 and <math>f \ge 0$, $g \ge 0$, $f, g \in L^{P}(\mu)$. Show that $||f + g||_{p} \ge ||f||_{p} + ||g||_{p}$.
- 15.a) Prove that if $1 \le p < \infty$ and $\{f_n\}$ is a sequence in $L^p(\mu)$ such that $||f_n f_m||_p \to 0$ as n, $m \to \infty$, then there exists a function f and a sequence $\{n_i\}$ such that $\lim f_n = f$ a.e. Further prove that $f \in L^p(\mu)$ and $||f_n - f||_p \to 0$.
 - b) Prove that if $\{f_n\}$ is a sequence in $L^{\infty}(\mu)$ such that $||f_n f_m||_{\infty} \to 0$ as n, m $\to \infty$, then there exists a function f such that $\lim f_n = f$ a.e., $f \in L^{\infty}(\mu)$ and $\lim ||f_n - f||_{\infty} = 0.$ (4×16=64)