

K23N 0421

Reg. No. :

Name :

I Semester M.Sc. Degree (CBSS – Reg./Supple./Imp.) Examination, October 2023 (2022 Admission Onwards) STATISTICS WITH DATA ANALYTICS MST1 C02 : Probability Theory

Time: 3 Hours

Max. Marks : 80

Answer all questions. Each question carries 2 marks.

1. Define a probability space. What is the monotone property of a probability measure ?

PART -

- 2. Define the concept of limit points of a set. Prove that every accumulation point is a limit point, but not vice versa.
- 3. Define the cumulative distribution function (CDF) of a random variable. Show that the limit of the CDF as (x) approaches negative infinity is 0.
- 4. State the continuity theorem of characteristic functions.
- 5. Define almost sure convergence of a sequence of random variables.
- State the Helly-Bray theorem, describing the convergence of the sequence of distribution functions.
- 7. Define the strong law of large numbers.
- Compare and contrast the Classical Central Limit Theorem and the De Moivre-Laplace Central Limit Theorem. (8×2=16)

P.T.O.

K23N 0421

PART – B

Answer any 4 questions. Each question carries 4 marks.

- 9. Define the minimal sigma-field generated by a collection of sets. Show that the power set of a set is a sigma field.
- 10. Define a random variable. Prove that the sum of two random variables is also a random variable.
- How probability mass function (pmf) is derived from a CDF ? Prove that a CDF is non-decreasing and right-continuous.
- 12. State and prove Chebyshev's inequality for any random variable.
- 13. Prove that convergence in probability implies convergence in distribution.
- 14. Let $\{Y_n\}$ be a sequence of independent Poisson random variates with mean λ_n . Then for $n \to \infty$, if $\sum \frac{\lambda_k}{n} \to 0$ then, show that $\{Y_n\}$ obey WLLN. (4×4=16)

PART-C

Answer any 4 questions. Each question carries 12 marks.

- 15. A) Define the limit superior and limit inferior of a sequence of sets A_n . Prove that lim sup $A_n = \bigcap_{\{k=1\}}^{\infty} \bigcup_{\{n=k\}}^{\infty} A_n$ and lim inf $A_n = \bigcup_{\{k=1\}}^{\infty} \bigcap_{\{n=k\}}^{\infty} A_n$.
 - B) Prove that for any sequence of events (A_n) , lim sup A_n and lim inf A_n are both events and lim sup $A_n \subseteq \lim \inf A_n$.
- 16. Let X be an RV with EX = 0 and var(X) = σ^2 . Then show that

A)
$$P\{X \ge x\} \le \frac{\sigma^2}{\sigma^2 + x^2}$$
 if $x > 0$
B) $P\{X \ge x\} \ge \frac{x^2}{\sigma^2 + x^2}$ if $x < 0$.

Jon Bosco Alege

-3-

K23N 0421

- 17. State and prove the basic inequality.
- 18. A) Show that the characteristic function is always bounded by 1.
 - B) Prove that the characteristic function of a random variable is uniformly continuous.
- 19. A) Prove that if (X_n) converges to (X) almost surely and (Y_n) converges to (Y) almost surely, then $(X_n + Y_n)$ converges to (X + Y) almost surely.
 - B) Show that if (X_n) converges to (X) in probability and (g(x)) is a continuous function, then $(g(X_n))$ converges to (g(X)) in probability.
- 20. A) State and prove the weak law of large numbers due to Bernoulli for a sequence of independent identically distributed random variables.
 - B) Let $X_1, X_2, ..., X_n$ be independent and identically distributed random variables with PMF P($X_i = k$) = 1/2^k for k = 1, 2, 3, ... check if the weak law of large numbers due to Khintchine is satisfied for this sequence. (4×12=48)