

K16P 0098

Reg.	No.	:	******
Nam	a ·		

I Semester M.C.A. Degree (Reg./Sup./Imp.) Examination, February 2016 (2014 Admn. Onwards) MCA1C01 : DISCRETE MATHEMATICS

Time : 3 Hours

Max. Marks: 80

Instructions: 1) Answer any ten questions from Section – A. Each question carries three marks.

Answer all questions from Section – B.
 Each question carries 10 marks.

SECTION - A

Answer any ten questions. Each question carries three marks.

- 1. Construct the truth table for $(p \land q) \lor \sim r$
- 2. Simplify the logical statement $-(-p \land q) \land (p \lor q)$.
- 3. Show that $\sim (p \rightarrow q) = p \wedge \sim q$
- 4. Given that ϕ is an empty set, find P(ϕ), P(P(ϕ)), P(P(P(ϕ))).
- 5. Define one-one function and onto function. Give an example each.
- 6. If A = { α , β } and B = {1, 2, 3}, what are A × B, B × A, A × A, B × B and (A × B) \cup (B × A) ?
- 7. Let A = {a, b}, R = {(a, a), (b, a), (b, b)} and S = {(a, b), (b, a), (b, b)}. Then verify that (S₀R)⁻¹ = R⁻¹ ₀ S⁻¹.

8. Define reflexive, irreflexive and antisymmetric relations with an example each.

P.T.O.

K16P 0098

in the state of the second second

(6+4)

(5+5)

9. Find n if 2P(n, 2) + 50 = P(2n, 2).

10. Find the sequence represented by the recursive formula

 $a_1 = 5, a_n = 2a_{n-1}, 2 \le n \le 7.$

11. Find the complement of the following graph.

12. Define graph, digraph and self-loop with an example each.

SECTION-E

Answer all questions. Each question carries ten marks.

13. a) Give the converse and contrapositive of the implications.

i) If it is hot; then I take cold drinks.

ii) If today is Monday, then tomorrow is Tuesday.

b) Show that $((p \lor \neg q) \land (\neg p \lor \neg q)) \lor q$ is a tautology.

c) Define Tautology and Contradiction.

a) Show that $(p \land (\neg p \lor q)) \lor (q \land \neg (p \land q) \equiv q$.

OR

b) Obtain disjunctive normal form of p∨ (~p→(q∨ (q→~r)))

14. a) State and prove D'Morgan's laws for set theory.

b) If $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijective mapping, then show that $(g_{\circ}f)^{-1} = f^{-1}_{\circ}g^{-1}$. OB

a) Use Venn diagram to show that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

b) If f: R→R is defined by f(x) = ax + b, where a,b, x∈R, a≠0, then show that f is invertible and find the inverse of f. (5+5)

-3-

K16P 0098

- 15. a) Give an example of a non-empty set and a relation on the set that satisfies each of the following combinations of properties.
 - i) Symmetric and reflexive but not transitive.
 - ii) Transitive and reflexive but not anti-symmetric.
 - iii) Anti-symmetric and reflexive but not transitive.
 - b) Let R be a relation from the Set A to the Set B and S be a relation from the Set B to the Set C, then show that (S₀R)⁻¹ = R⁻¹₀S⁻¹.
 (6+

(6+4)

(5+5)

- a) Explain Warshall's algorithm with suitable example.
- b) Let $A = \{0, 1, 2, 3, 4\}$. Find the equivalence classes of the equivalence relation $R = \{(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)\}$ defined on A. Draw the digraph of R and write down the partition of A induced by R. (5+5)
- 16. a) For any finite Sets A, B, C, show that $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(B \cap C) + n(A \cap B \cap C).$
 - b) If P(n, r) = 5040 and C(n, r) = 210, find n and r.
 - a) State Pigeonhole principle. Show that among 100 people there are atleast $\begin{bmatrix}100\\{12}\end{bmatrix} = 9$ who were born in the same month.
 - b) What is the selection of the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with $a_0 = 2, a_1 = 7$? (5+5)
- 17. a) Define Hamiltonian graph and Eulerian graph with examples.
 - b) Explain Dijkstra's algorithm of finding shortest path.

(4+6)

10

a) Explain depth-first search. Use it to find a spanning tree for the graph shown below.

