

K23P 3295

Reg. No. :

Name :

First Semester M.Sc. Degree (CBSS – Supple. (One Time Mercy Chance)/Imp.) Examination, October 2023 (2017 to 2022 Admissions) MATHEMATICS MAT1C01 : Basic Abstract Algebra

PART - A

Time : 3 Hours

Max. Marks: 80

Answer any four questions from this Part. Each question carries 4 marks.

- 1. Find all abelian groups, up to isomorphism of order 32.
- 2. Prove or disprove : Every abelian group of order 30 is cyclic.
- 3. Prove that the field Q is a field of quotients of Z.
- 4. Show that the group Z has no principal series.
- 5. Show that $\sqrt{2}$ is not a rational number.
- 6. Find all p such that x + 2 is a factor of $x^4 + x^3 + x^2 x + 1$ in $Z_p[x]$.

PART - B

Answer four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit – I

- a) Prove the following : Let X be a G set. Then |G_x| = (G : G_x). If |G| is finite, then |G_x| is a divisor of |G|.
 - b) State and prove The first Sylow Theorem.

P.T.O.

-2-

- a) Let G be a group of order 108. Show that there exists a normal subgroup of order 27 or 9.
 - b) Are the groups Z₄ × Z₁₈ × Z₁₅ and Z₃ × Z₃₆ × Z₁₀ isomorphic ? Why or why not ?
 - c) Prove that the center of a finite non-trivial p-group G is non-trivial.
- 9. a) If H and K are finite subgroups of a group G, prove that $|HK| = \frac{(|H|)(|K|)}{(|H \cap K|)}$.
 - b) Prove that every group of order 255 is cyclic.
 - c) Show that every group of order 30 contains a subgroup of order 15.

Unit – II

- 10. a) Prove the following : Let F be a field of quotients of D and let L be any field containing D. Then there exists a map ψ : F → L that gives an isomorphism of F with a sub field of L such that ψ (a) = a for all a ∈ D.
 - b) Show that Q under addition is not a free abelian group.
 - c) Let $G = Z \times Z \times Z$, $H = Z \times Z \times \{0\}$ and $N = \{0\} \times Z \times Z$. Show that HN/N isomorphic to Z and H/(H \cap N) isomorphic to Z.
- 11. a) Prove that any two fields of quotients of an integral domain D are isomorphic.
 - b) Describe the field F of quotients of the integral subdomain {n + 2mi|n, m ∈ Z} of C.

c) State and prove the second Isomorphism Theorem.

- 12. a) Let $\phi: \mathbb{Z}_{18} \to \mathbb{Z}_{14}$ be a homomorphism where $\phi(1) = 8$.
 - i) Find the kernel K of ϕ .
 - ii) List the cosets in Z₁₈/K.
 - iii) Find the group $\phi[Z_{18}]$.
 - b) Show that S_n is not solvable for $n \ge 5$.
 - c) Show that if G and G' are free abelian groups, then G × G' is free abelian.

DonBosco

Unit – III

- 13. a) Prove that the polynomial $\Phi_p(x) = \frac{x^p 1}{x 1}$ is irreducible over Q for any prime p.
 - b) Prove the following : Let R be a commutative ring with unity. Then M is a maximal ideal of R if and only if R/M is a field.
- 14. a) Prove the following : Let f(x) ∈ F[x], and let f(x) be of degree 2 or 3. Then f(x) is reducible over F if and only if it has a zero in F.
 - b) If R is a ring with unity and N is an ideal of R containing a unit. Prove that N = R.
 - c) Does $Z_5[x]/(x^3 + 3x + 2)$ is a field ? Justify your answer.
 - d) Describe all ring homomorphisms of $Z \times Z$ in to $Z \times Z$.
- 15. a) Prove the following : If R is a ring with unity, then the map $\phi : Z \to R$ given by $\phi(n) = n.1$ for $n \in Z$ is a homomorphism of Z in to R.
 - b) State and prove The Eisenstein Criterion.
 - c) Show that $25x^5 9x^4 3x^2 12$ is irreducible over Q.