

K21P 4211

Reg. No.	AND SCIENCE
Name :	UBRARY IS
	I Semester M.Sc. Degree (C.B.S.S Reg./Supple./Imp.)
	Examination, October 2021
	(2018 Admission Onwards)
	MATHEMATICS
	MAT1C03 : Real Analysis

Time : 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks :

- 1. Let A be the set of all sequences whose elements are the digits 0 and 1. Show that A is countable.
- If f is monotonically increasing on (a, b), show that f(x) exists and f(x-) ≤ f(x) for every x∈ (a, b).
- Let f(x) = x¹⁰ sin 1/x if x ≠ 0 and f(0) = 0. Is f differentiable at all points ? If so, find f'(x) for all x.
- 4. If f is continuous on [a, b], show that $f \in R(\alpha)$ on [a, b].
- 5. State and prove the integration by parts theorem.
- 6. Is the curve $f(t) = e^{2\pi i t}$, $t \in [0, 2]$ rectifiable ? Justify. If rectifiable, find its arc length.

PART - B

Answer any four questions from this Part without omitting any Unit. Each question carries-16 marks :

Unit – I

- Suppose X is a metric space and let K⊂Y⊂X. Show that K is compact relative to X if and only if K is compact relative to Y.
 - b) Construct the Cantor set and show that it is perfect.
 - c) If f is a continuous mapping of a metric space X into a metric space Y and if E is a connected subset of X, show that f(E) is connected.

K21P 4211

8. a) Show that every K-cell is compact.

b) Show that a mapping f of a metric space X into a metric space Y is continuous if and only if f⁻¹(V) is open in X for any open set V in Y.

-2-

- a) Prove that a subset E of the real line R is connected if and only if it has the following property : if x∈ E, y∈ E and x < z < y, then z∈ E.
 - b) Let f be a continuous mapping of a compact metric space X into a metric space Y. Show that f is uniformly continuous on X.

Unit – II

- 10. a) State and prove L'Hospital's Rule.
 - b) Assume α increases monotonically and α'∈ R on [a, b]. Let f be a bounded real function on [a, b]. Show that, f∈ R(α) if and only if fα'∈ R and in that case,
 ∫_a^b f dα = ∫_a^b f(x)α'(x)dx.
- 11. a) Suppose $f \in R(\alpha)$ on [a, b] and let $m \le f \le M$. A function ϕ is continuous on [m, M] and $h(x) = \phi(f(x))$ on [a, b]. Show that $h \in R(\alpha)$ on [a, b].
 - b) Suppose f is bounded on [a, b]. If f has only finitely many points of discontinuity on [a, b] and if α is continuous at any point at which f is continuous, show that f∈ R(α).
 - c) Suppose $f : [a, b] \rightarrow \mathbb{R}^k$ is continuous and f is differentiable in (a, b). Show that there exists $x \in (a, b)$ such that $|f(b) f(a)| \le (b a) |f'(x)|$.
- 12. a) State and prove change of variable rule in Riemann-Stieltjes integration.
 - b) State and prove the generalized mean value theorem and deduce the mean value theorem.

c) Let f and α be functions on $\left[0, \frac{\pi}{2}\right]$ defined as $f(x) = \cos x$, $\alpha(x) = \sin x$.

Is $f \in R(\alpha)$? Justify. If $f \in R(\alpha)$ evaluate $\int_{0}^{\frac{2\alpha}{2}} f d\alpha$.

Unit – III

-3-

13. a) Let $f \in \mathbb{R}$ on [a, b]. For $a \le x \le b$, let $F(x) = \int f(t) dt$. Show that F is continuous

on [a, b]. Furthermore, if f is continuous at a point x_0 of [a, b], then show that F is differentiable at x_0 and $F'(x_0) = f(x_0)$.

- b) Let f be of bounded variation on [a, b]. Let V(x) = V_i(a, x) if a < x ≤ b and V(a) = 0. Show that every point of continuity of f is also a point of continuity of V. Prove the converse also.</p>
- c) Let $f : [a, b] \rightarrow \mathbb{R}$ satisfies $|f(x) f(y)| \le K|x y|$ for all $x, y \in [a, b]$ and K > 0. Is f of bounded variation ? Justify.
- 14. a) If $f : [a, b] \to \mathbb{R}^k$ and if $f \in \mathbb{R}(\alpha)$ for some monotonically increasing α on [a, b],

show that $|f| \in \mathbf{R}(\alpha)$ and $\left| \int_{a}^{a} f d\alpha \right| \leq \int_{a}^{a} |f| d\alpha$.

- b) State and prove additive property of arc length.
- c) If f is monotone increasing on [a, b], evaluate the total variation of f on [a, b].
- 15. a) State and prove fundamental theorem of calculus.
 - b) Let $f : [a, b] \to \mathbb{R}^n$ be a rectifiable path. If $x \in (a, b]$, let $s(x) = \bigwedge_i (a, x)$ and let s(a) = 0. Show that the following holds :
 - The function s is increasing and continuous on [a, b].
 - ii) If there is no subinterval of [a, b] on which f is constant, then s is strictly increasing on [a, b].
 - c) Is the function $f(x) = x \sin \frac{\pi}{x}$ if $x \neq 0$ and f(0) = 0 is of bounded variation on [0, 1]? Justify.