

K22P 1604

Reg. No. :

Name :

I Semester M.Sc. Degree (CBSS – Reg./Sup./Imp.) Examination, October 2022 (2019 Admission Onwards) MATHEMATICS MAT1C04 : Basic Topology

LIERARY

Time : 3 Hours

Max. Marks: 80

PART – A

Answer any four questions from this Part. Each question carries 4 marks. (4x4=16)

- 1. Prove that every 0-dimensional To space is totally disconnected.
- Let X be a set with at least two members and let T be the trivial topology on X. Then show that (X, T) is not metrizable.
- 3. Define usual topology and lower limit topology on ℝ.
- Let (X, T) be a topological space, let A be a subset of X and let B be a basis for T. Then prove that (B ∩ A : B ∈ B) is a basis for the subspace topology on A.
- Let (X₁, T₁) and (X₂, T₂) be Hausdorff spaces and let T be the product topology on X = X₁ × X₂. Then prove that (X, T) is a Hausdorff space.
- 6. Examine whether $\mathbb{R} \{0\}$ with usual topology is connected or not.

PART - B

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks. (4×16=64)

Unit – I

7. a) Let d be the usual metric for Rⁿ. Then show that

 $A = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n : \text{for each } i = 1, 2, ..., n, x_i \text{ is rational} \} \text{ is a countable dense subset of } \mathbb{R}^n.$

b) Prove that every complete metric space is of the second category.

P.T.O.

K22P 1604

- c) Let (X, \mathcal{T}) be a topological space, let (Y, d) be a metric space, let $f : X \to Y$ be a function and for each $n \in \mathbb{N}$, let $f_n : X \to Y$ be a continuous function such that the sequence $\langle f_n \rangle$ converges uniformly to f. Then prove that f is continuous.
- 8. a) Prove that a family B of subsets of a set X is a basis for some topology on X if and only if : (1) X = ∪ {B : B ∈ B} and (2) if B₁, B₂ ∈ B and x ∈ B₁ ∩ B₂, then there exists B ∈ B such that x ∈ B and B ⊆ B₁ ∩ B₂.
 - b) Let T and T' be topologies on a set X and let B and B' be bases for T and T' respectively. Then prove that the following conditions are equivalent :
 - i) T' is finer than T.
 - ii) For each x ∈ X and each B ∈ B such that x ∈ B, there is a member B' of B' such that x ∈ B' and B' ⊂ B.
 - c) Show that the lower-limit topology on $\mathbb R$ is not the usual topology on $\mathbb R$.
- a) Let A be a subset of a topological space (X, T), and let x ∈ X. Then prove that x ∈ A if and only if every neighborhood of x has a nonempty intersection with A.
 - b) Let A be a subset of a topological space (X, T). Then prove that $\overline{A} = A \cup A'$.
 - c) Prove that every second countable space is separable.

Unit - II

- 10. a) Let $\{(X_{\alpha}, \mathcal{T}_{\alpha}) : \alpha \in \Lambda\}$ be an indexed family of topological spaces, and for each $\alpha \in \Lambda$, let $(A_{\alpha}, \mathcal{T}_{A\alpha})$ be a subspace of $(X_{\alpha}, \mathcal{T}_{\alpha})$. Then prove that the product topology on $\prod_{\alpha \in \Lambda} A_{\alpha}$ is the same as the subspace topology on $\prod_{\alpha \in \Lambda} A_{\alpha}$ determined by the product topology on $\prod_{\alpha \in \Lambda} X_{\alpha}$.
 - b) Let $\{(X_{\alpha}, \mathcal{T}_{\alpha}) : \alpha \in \Lambda\}$ be an indexed family of first countable spaces, and let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$. Then prove that (X, \mathcal{T}) is first countable if and only if \mathcal{T}_{α} is the trivial topology for all but a countable number of α .
- 11. a) Let (A, T_A) be a subspace of a topological space (X, T). Prove that a subset C of A is closed in (A, T_A) if and only there is a closed subset D of (X, T) such that C = A ∩ D.
 - b) Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces, let $f : X \to Y$ be a function, and let $\{U_{\alpha} : \alpha \in \Lambda\}$ be a collection of open subsets of X such that

 $X = \bigcup_{\alpha \in \Lambda} U_{\alpha}$ and $f \mid_{U_{\alpha}} : U_{\alpha} \to Y$ is continuous for each $\alpha \in \Lambda$. Then prove that f is continuous.

c) Prove that the function $f : \mathbb{R} \to \mathbb{R}^2$ defined by f(x) = (x, 0) for each $x \in \mathbb{R}$ is an embedding of \mathbb{R} in \mathbb{R}^2 .

-2-

12. a) Let (X, T), (Y_1, U_1) and (Y_2, U_2) be topological spaces and let $f : X \to Y_1 \times Y_2$ be a function. Then prove that f is continuous if and only if $\pi_1 \circ f$ and $\pi_2 \circ f$ are continuous.

-3-

- b) Let (X₁, T₁) and (X₂, T₂) be Hausdorff spaces, and let T denote the product topology on X = X₁ × X₂. Then prove that (X, T) is Hausdorff.
- c) Let (X_1, \mathcal{T}_1) and (X_2, \mathcal{T}_2) be topological spaces, and let π_1 and π_2 denote the projection maps. Then prove that $S = \left\{ \pi_1^{-1}(U) : U \in \mathcal{T}_1 \right\} \cup \left\{ \pi_2^{-1}(V) : V \in \mathcal{T}_2 \right\}$ is a subbasis for the product topology on $X_1 \times X_2$.

Unit - III

- 13. a) Let {(X_α, T_α) : α ∈ Λ} be a collection of topological spaces, and let T be the product topology on X = Π_{α∈Λ} X_α. Then prove that (X, T) is locally connected if and only if for each α ∈ Λ, (X_α, T_α) is locally connected and for all but a finite number of α ∈ Λ, (X_α, T_α) is connected.
 - b) Prove that a topological space (X, T) is locally connected if and only if each component of each open set is open.
 - c) Let (X, T) be a topological space and suppose X = A ∪ B, where A and B are nonempty subsets that are separated in X. If H is a connected subspace of X, then prove that H ⊆ A or H ⊆ B.
- a) Let (X, T) be a topological spaces and let A ⊆ X. Then prove that the following conditions are equivalent :
 - i) The subspace (A, T_{Δ}) is connected.
 - ii) The set A cannot be expressed as the union of two nonempty sets that are separated in X.
 - iii) There do not exist U, V $\in T$ such that U $\cap A \neq \emptyset$, V $\cap A \neq \emptyset$, U $\cap V \cap A \neq \emptyset$ and A \subseteq U \cup V.
 - b) Prove that the closed unit interval I has the fixed-point property.
 - c) Let (X, T) be a topological space and suppose X = A ∪ B, where A and B are nonempty subsets that are separated in X. If H is a connected subspace of X, then prove that H ⊆ A or H ⊆ B.
- a) Prove that each path component of a topological space is pathwise connected.
 - b) Show that the topologist's sine curve is not pathwise connected.
 - c) Define path product of two paths in a topological space.