

K21P 2604

Reg.	No.	;	 	 •••	 	•••	•••	 	 	 	
Nam	e:		 	 	 			 	 	 	

V Semester M.C.A./M.C.A. (Lateral Entry) Degree (C.B.S.S. – Reg./Suppl./Imp.) Examination, November 2021 (2016 Admission Onwards) Elective - III : MCA 5E09 : OPERATIONS RESEARCH

Time: 3 Hours

- Max. Marks: 80
- Instructions: 1) Answer any ten questions from Part A. Each question carries 3 marks. 2) Answer all questions from Part - B. Each question carries 10 marks.

PART

Answer any ten questions. Each question carries 3 marks.

- 1. Distinguish between PERT and CPM.
- 2. What do you mean by queue discipline ? Explain various queue disciplines.
- 3. Explain Duality in LPP.
- 4. Explain any five applications of Linear Programming Problem.
- 5. Explain the various steps involved in solving a LPP by graphic method.
- 6. Briefly explain Branch and Bound technique in Integer Programming Problem.
- 7. What are the uses of Dynamic Programming?
- 8. What are the assumptions in Sequencing Problem ?
- 9. Explain briefly Transportation problem.
- 10. What is network analysis ? When it is used ?
- 11. Define Unbalanced Assignment Problem. How are they solved ?
- 12. List the characteristics of a Markov Chain.

(10×3=30)

P.T.O.

K21P 2604

-2-

PART - B

Answer all guestions. Each guestion carries 10 marks.

13. a) Solve the following by Two Phase Simplex Method : Minimize $Z = 6x_1 + 5x_2$

- Subject to $2x_1 + x_2 \ge 80$, $x_1 + 2x_2 \ge 60$ and $x_1 \ge 0$, $x_2 \ge 0$. OR
- b) Solve the following by Big M Method : Minimize $Z = 3x_1 + 8x_2$ Subject to $x_1 + x_2 = 200$, $x_1 \le 80$, $x_2 \ge 60$ and $x_1 \ge 0$, $x_2 \ge 0$.
- 14. a) Solve the following transportation problem whose cost matrix availability at each plant and requirement at each warehouse are given as follows :

	h	Wa	rehouse	1	
Plant	W	W ₂	W W3	W ₄	Availability
P ₁	190	\$ 300	500	100	70
P ₂	700	300	400	600	90
P ₃	400	100	600	200	180
Requirement	50	80	70	140	
-0'0		so.			

b) Use Dual Simplex Method to solve :

Maximize $Z = 3x_1 + x_2$

Subject to $x_1 + x_2 \ge 1$, $2x_1 + 3x_2 \ge 2$ and $x_1 \ge 0$, $x_2 \ge 0$.

- 15 a) Solve using Branch and Bound method : Maximize $Z = 2x_1 + 2x_2$ Subject to $5x_1 + 3x_2 \le 8$, $x_1 + 2x_2 \le 4$, and $x_1 \ge 0$, $x_2 \ge 0$ and integers. OR
 - b) By Dynamic programming technique, solve the problem : Minimize $Z = x_1^2 + x_2^2 + x_3^2$ Subject to $x_1 + x_2 + x_3 \ge 15$, $x_1, x_2, x_3 \ge 0$.

K21P 2604

16. a) A small maintenance project consists of the following 10 jobs. Draw network diagram (arrow diagram).

Calculate :

- 1) T_{E} and T_{L} values of all events.
- 2) EST, LST, EFT, LFT of all activities.
- 3) Floats of all the activities.

Also obtain :

- a) critical activities
- b) project duration.

Activity :									6 - 8	7-8
Duration :	4	6	10	8	2	12	4	15	14	8
	OR			. 0	1	V .				

ollege

b) Solve the following sequencing problem :

Jobs	A	B	C	C D	E	F
1	19	8	8	3	11	24
2	18	06	90	6	9	18
3	12	5	68	5	7	15
4	20	25	0 3	4	8	11

17. a) Customers arrive at a box office window, being manned by a single individual according to a Poisson input process with a mean rate of 30 per hour. The time required to serve a customer has an exponential distribution with a mean of 90 seconds. Find the average waiting time of a customer. Also determine the average number of customers in the system and average queue length.

OR

b) Use Bellman's principle of optimality to find the optimum solution :

Maximize $Z = x_1 \cdot x_2 \cdot x_3$

Subject to $x_1 + x_2 + x_3 = 5$, $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$.

(5×10=50)