K24P 0864

Reg. No. :

Name :

Second Semester M.Sc. Degree (C.B.S.S. – Supple. (One Time Mercy Chance)/Imp.) Examination, April 2024 (2017 to 2022 Admissions) MATHEMATICS MAT 2C 09 : Foundations of Complex Analysis

Time: 3 Hours

Max. Marks : 80

PART - A

Attempt any four questions from this part. Each question carries 4 marks :

- Given that γ and σ are closed rectifiable curves having the same initial points. Prove that n(γ + σ, a) = n (γ, a) + n(σ, a) for every a ∉ {γ} ∪ {σ}.
- 2. Let f be analytic on B(0, 1) and suppose $|f(z)| \le 1$ for |z| < 1. Show that $|f'(0)| \le 1$.
- 3. Does the function $f(z) = z^2 \sin\left(\frac{1}{z^2}\right)$ has an essential singularity at z = 0? Justify your answer.
- 4. Using residue Theorem, prove that $\int_0^{\infty} \frac{1}{1+x^2} dx = \frac{\pi}{2}$.
- 5. Define the set $C(G, \Omega)$ and show that it is non-empty.
- 6. State the Weierstrass Factorization theorem.

PART – B

Answer any four questions from this part without omitting any Unit. Each question carries 16 marks :

Unit – I

- a) Prove the following : If G is simply connected and f : G → C is analytic in G then f has a primitive in G.
 - b) State and prove The Open Mapping Theorem.

P.T.O.

K24P 0864

-2-

- 8. State and prove the Third Version of Cauchy's Theorem.
- Prove the following : let G be a connected open set and let f : G → C be an analytic function. Then the following conditions are equivalent.
 - a) $f \equiv 0$;
 - b) there is a point a in G such that $f^n(a) = 0$ for each $n \ge 0$;
 - c) $\{z \in G : f(z) = 0\}$ has a limit point in G.

Unit - II

- 10. a) Show that for a > 1, Show that $\int_0^{\pi} \frac{d\theta}{a + \cos \theta} = \frac{\pi}{\sqrt{a^2 1}}$ b) State and prove the Residue theorem.
- 11. State and prove the Laurent Series Development.
- 12. Prove the following :
 - a) If |a| < 1 then $\phi_a(z) = \frac{z-a}{1-az}$ is a one-one map of $D = \{z : |z| < 1\}$ on to itself; the inverse of ϕ_a is ϕ_{-a} . Furthermore, ϕ_a maps ∂D on to ∂D , $\phi'_a(0) = 1 - |a|^2$ and $\phi'_a(a) = (1 - |a|^2)^{-1}$.
 - b) Let $f(z) = \frac{1}{z(z-1)(z-2)}$; give the Laurent series of f(z) in each of the following annuli :
 -) ann(0; 0, 1),
 - ii) ann (0; 1, 2),
 - iii) ann (0;2,∞).

Unit – III

- 13. a) Prove the following : If G is open in C then there is a sequence {K_n} of compact subsets of G such that G = ∪[∞]_{n=1}K_n. Moreover the sets K_n can be chosen to satisfy the following conditions :
 - i) $k_n \subset int K_{n+1}$.
 - ii) $K \subset G$ and K is compact implies $K \subset K_n$ for some n.
 - iii) Every component of $C_{x} K_{n}$ contains a component of $C_{x} G$.
 - b) State and prove Hurwitz's theorem.

-3-

K24P 0864

- 14. a) With the usual notations, prove that $|1 E_p(z)| \le |z|^{p+1}$ for $|z| \le 1$ and $p \ge 0$.
 - b) Discuss the convergence of the infinite product $\prod_{n=1}^{\infty} \frac{1}{n^p}$ for p > 0.
- 15. a) Show that $\prod (1+z_n)$ converges absolutely iff $\prod (1+|z_n|)$ converges.
 - b) Prove the following : If $\text{Rez}_n > 0$ then the product $\prod z_n$ converges absolutely iff the series $\sum (z_n 1)$ converges absolutely.
 - c) Prove the following : Let Rez_n > 0 for all n ≥ 1. Then ∏^{*}_{n-1}Z_n converges to a non zero number iff the series ∑^{*}_{n-1}logz_n converges.