

K19P 1374

Reg. No. : Name :

III Semester Master of Computer Application (M.C.A.)/ M.C.A. Lateral Entry Degree (Reg./Suppl./Imp.) Examination, November - 2019

(2014 Admission Onwards) MCA 3C15 : THEORY OF COMPUTATION

Time : 3 Hours

Max. Marks : 80

SECTION - A

Answer any TEN questions. Each question carries THREE marks.

(10x3=30)

- 1. Define finite automata and specify its application.
- 2. Find grammar for $\Sigma = \{a, b\}$ that generates the set of all strings with no more than three a's
- 3. Define regular expression
- 4. Explain ambiguous Grammar
- 5. Define right and left linear grammars
- 6. Write a note on Derivation trees
- 7. Explain pushdown automata
- 8. Write a note on removing useless productions with example
- 9. Define Turing Machine
- 10. State the pumping lemma for linear languages
- 11. Write a note on off-line turing machine
- 12. Write a note on Linear Bounded Automata

SECTION - B

Answer all questions. Each question carries ten marks.

- **13.** a) i) Find a DFA that accepts all the strings on {0, 1}, except those containing the substring 001. (5+5)
 - ii) Explain the procedure to reduce the Number of States in DFA

(OR)

b) i) Define Non Deterministic finite accepter (NFA) (3+7)

P.T.O.

K19P 1374	4 (2)	
ii) 14. a) i)	Construct a NFA that accepts the set of with "aba" as substring and construct D State and prove Pumping Lemma (PL)	FA
ii)	Suppl./mp.) Examination, November - 201	(7+3)
b) i) 08 annai	Define context free grammars and grammars for the following languages $L = \{w \in \{a,b\} *: n_a(w) \neq n_b(w)\}$	find the context free (5+5)
ii)		Answer any TEN
	onvert the grammar →ABb a	(10) Define Inite autom
$A \rightarrow aaA B$ $B \rightarrow bAb$		
Into Greibach Normal Form (OR)		
	Construct an NPDA for accepting the langu $={ww^R : W \in {a, b}^*}$	lage (10)
	Show that the family of context free language concatenation and star closure	ten no eton s etoW (10)
b)	Construct TM for an and a second second	beM print ended .e
17. a) E	 = { wcw^R wε(a+b)* & w^R represents rever Explain: - Nondeterministic Turing Machine Universal Turing Machine 	nil no aton a eth (5+5)
	A that acce (RO) the strings on (0.1), exc	
b) E	Explain Turing machine halting problem with that is undecidable.	h an example and prove
	n Deterministic finite accepter (NFA)	