

Reg.	No.	1	
------	-----	---	--

Name :

Fifth Semester M.C.A. Degree (Regular/Supplementary/Improvement) Examination, January 2018 (2014 Admission Onwards) Elective – III : MCA5E09 : OPERATIONS RESEARCH

Time: 3 Hours

13

Max. Marks: 80

Instructions : Answer any ten questions from Part – A. Each question carries 3 marks. Answer all questions from Part – B. Each question carries 10 marks.

PART-A

Answer any ten questions. Each question carries 3 marks.

- 1. What is linear programming ? Explain briefly the dual of a LPP.
- 2. Define artificial variable. What are the methods used to solve an LPP involving artificial variables ?
- 3. When does degeneracy happen in transportation problem ?
- 4. What is an unbalanced assignment problem ? Give example.
- 5. How does a Travelling Salesman Problem differ from a routine assignment model?
- 6. List the applications of Dynamic programming problem.
- 7. Explain, briefly branch and bound method.
- 8. What is a sequencing problem ? Give example.

9. What is an event ? How will you represent an event in a network diagram ?

10. Explain the basic difference between PERT and CPM.

11. List the main characteristics of a queuing system.

12. Write the classification of stochastic process.

PART-B

college Answer all questions. Each question carries 10 marks.

13. a) A company produces two different products, A and B and makes a profit of ₹ 40 and ₹ 30 per unit respectively. The production process has a capacity of 30000 man-hours. It takes 3 hours to produce one unit of A and one hour to produce one unit of B. The market survey indicates that the maximum number of units of product A that can be sold is 8000 and those of B is 12000. Formulate the problem and solve it by graphical method.

b) Use simplex method to solve the LPP

Min. $Z = x_2 - 3x_3 + 2x_5$ Subject to $3x_2 - x_3 + 2x_5 \le 7$ $-2x_2 + 4x_3 \le 12$

$$-4x_2 + 3x_3 + 8x_5 \le 10$$

$$x_2, x_3, x_5 \ge 0$$

14. a) Write down the dual of the following LPP and solve it

Max. Z =
$$4x_1 + 2x_2$$

Subject to $x_1 + x_2 \ge 3$
 $x_1 - x_2 \ge 2$
 $x_1, x_2 \ge 0$
OR

- b) i) Mention the applications of LPP.
 - ii) Find the initial basic feasible solution for the following transportation problem by VAM.

			De	stinatio	n	1/11
		D ₁	D ₂	D ₃	D4	Supply
Origin	01	11	13	17	14	250
	02	16	18	14	10	300
	03	21	24	13	10	400
	Demand	200	225	275	250	950

15. a) Use Branch-and-Bound techniques to solve the following IPP 100500.20 ikadavu,

 $x_1 + 3x_2 \le 6$ $7x_1 + x_2 \le 35$ $0 \le x_1, x_2 \le 7$ and x_1, x_2 are integers. b) Solve the IPP by cutting plane method. Max. $Z = 7x_1 + 9x_2$ Subject to $-x_1 + 3x_2 \le 6$

 $7x_1 + x_2 \le 35$

 $x_1 \ge 0, x_2 \ge 0$ and integers.

- 16. a) i) Write a short note on sequencing problem.
 - ii) A small maintenance project consist of the following jobs, whose precedence relationships are given below :

Job	1-2	1-3	2-3	2-5	3-4	3-6	4-5	4-6	5-6	6-7
Duration (days)		-		5	8	12	1	14	3	14

- a) Draw an arrow diagram representing the project.
- b) Find the total float for each activity.
- c) Find the critical path and the total project duration.

Δ

6

6

b) Four jobs 1, 2, 3 and 4 are to be processed on each of the fire machines A, B, C, D and E in the order ABCDE. Find the total minimum elapsed time if no passing of jobs is permitted. Also find the idle time for each machine.

-4

WE (Jobs						
Machines	1	2	3	4			
Α	7	6	5	8			
В	5	6	4	3			
С	2	4	5	3			
D	3	5	6	2			
E	9	10	8	6			

OR

- sificati-17. a) Explain with suitable examples the classification states of Markov Chain.
 - b) Write short notes on classification of queuing model and the basic structure Don Bosco Angadikanos