K24P 0861

Reg. No. :

Name :

Second Semester M.Sc. Degree (C. B. S. S. – Supple. (One Time Mercy chance)/Imp.) Examination, April 2024 (2017 to 2022 Admission) MATHEMATICS MAT 2C 06 : Advanced Abstract Algebra

Time : 3 Hours

Max. Marks : 80

PART - A

Answer four questions from this Part. Each question carries 4 marks.

- 1. Show that $\alpha = 1 + i$ is algebraic over \mathbb{Q} by finding $f(x) \in \mathbb{Q}[x]$ such that $f(\alpha) = 0$.
- 2. Prove that an ideal (p) in a PID is maximal if and only if p is an irreducible.
- Let E be an algebraic extension of a field F. Prove that there exist a finite number of elements α₁, ..., α_n ∈ E such that E = F(α₁, ..., α_n) if and only if E is a finite extension of F.
- 4. Prove that doubling the cube is impossible.
- 5. Show that for a prime p, the splitting field over \mathbb{Q} of $x^p 1$ is of degree p 1 over \mathbb{Q} .
- If E is a finite extension of F, prove that {E : F) divides [E : F].

 $(4 \times 4 = 16)$

PART - B

Answer four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit – I

- a) Let F be a field and let f(x) be a nonconstant polynomial in F[x]. Prove that there exist an extension field E of F and an α ∈ E such that f(α) = 0.
 - b) Let $\alpha = \sqrt{2} + i$. Find $irr(\alpha, \mathbb{Q})$ and $deg(\alpha, \mathbb{Q})$ for the algebraic number $\alpha \in \mathbb{C}$.

K24P 0861

- a) State and prove Gauss's lemma.
 - b) If D is a UFD, prove that D[x] is a UFD.
- 9. a) State and prove Euclidean algorithm.
 - b) Prove that the norm function N hold following properties for $\alpha, \beta \in \mathbb{Z}$ [i]:
 - i) $N(\alpha) \ge 0$
 - ii) $N(\alpha) = 0$ if and only if $\alpha = 0$
 - iii) $N(\alpha\beta) = N(\alpha)N(\beta)$.

- Unit IL Colle 10. a) If E is a finite extension field of a field F and K is a finite extension field of E, prove that K is a finite extension of F and [K : F] = [K : E] [E : F].
 - b) Prove that a field F is algebraically closed if and only if every nonconstant polynomial in F[x] factors in F[x] into linear factors.
 - c) Prove that $\mathbb{Q}\left(\sqrt{3} + \sqrt{7}\right) = \mathbb{Q}\left(\sqrt{3}, \sqrt{7}\right)$
- 11. a) Let α and β be two constructible numbers. Prove that $\alpha + \beta$, $\alpha \beta$, $\alpha\beta$ and α/β if $\beta \neq 0$ are constructible.
 - b) Prove that trisecting an angle is impossible.
- 12. a) Prove that a finite field GF(pⁿ) of pⁿ elements exists for every prime power pⁿ.
 - b) Prove that the set of all automorphisms of $\mathbb{Q}(\sqrt{2},\sqrt{3})$ leaving \mathbb{Q} fixed is isomorphic to Klein 4-group.

Unit - III

- 13. State and prove isomorphism extension theorem.
- 14. a) Prove that a field E, where $F \le E \le F$, is a splitting field if and only if every automorphism of Fleaving F fixed maps E onto itself and thus induces an automorphism of E leaving F fixed.
 - b) State main theorem of Galois theory.
- a) If E is a finite extension of F, prove that E is separable over F if and only if each α in E is separable over F.
 - b) Prove that every finite field is perfect.

 $(4 \times 16 = 64)$