K22P 3320

IV Semester M.Sc. Degree (CBSS – Reg./Supple./Imp.) Examination, April 2022 (2018 Admission Onwards) MATHEMATICS MAT4C16 : Differential Geometry

Time : 3 Hours

Max. Marks : 80

PART – A

Answer any 4 questions. Each question carries 4 marks.

- 1. Sketch the level set and graph of the function $f(x_1, x_2) = x_1 x_2$.
- 2. Show that the set S of all unit vectors at all points of \mathbb{R}^2 form a 3-surface in \mathbb{R}^4 .
- Prove that a parametrized curve α : I → S is a geodesic in S if and only if its covariant acceleration [ά]' is zero along α.
- 4. Let S be an n-surface in \mathbb{R}^{n+1} , let p, q \in S and let α be a parametrized curve in S from p to q. Then prove that the parallel transport $P_{\alpha} : S_p \to S_q$ along α is a vectorspace isomorphism.
- 5. Show that the length of a parametrized curve is invariant under re-parametrization.
- Express torus as a parametrized surface in ℝ⁴.

PART - B

Answer any 4 questions without omitting any Unit. Each question carries 16 marks.

Unit – I

- 7. a) Sketch the vector field $\mathbb{X}(p) = (p, X(p))$ on \mathbb{R}^2 , where $X(x_1, x_2) = (x_2, x_1)$. Also find the integral curve through an arbitrary point (a, b).
 - b) Let U be an open set in ℝⁿ⁺¹ and let f: U → ℝ be smooth. Let p ∈ U be a regular point of f and c = f(p). Then prove that the set of all vectors tangent to f⁻¹(c) at p is equal to [Δf(p)]¹.

K22P 3320

- 8. a) State and prove Lagrange multiplier theorem in an n-surface in \mathbb{R}^{n+1} .
 - b) If S ⊂ ℝⁿ⁺¹ is a connected n-surface in ℝⁿ⁺¹, then prove that on S there exist only two orientations.
 - c) Discuss about the orientability of Mobious band.
- 9. a) Let X be a smooth vector field on an open set U ⊂ Rⁿ⁺¹ and let p ∈ U. Then prove that there exist a unique maximal integral curve α of X with α(0) = p and any other integral curve β with β(0) = p will be a restriction of α.
 - b) Define the special linear group SL(2). Show that it will form a surface.

Unit – II

- 10. a) Let S be a regular, compact connected oriented n-surface in ℝⁿ⁺¹, exhibited as a level set f⁻¹(c) of a smooth function f : ℝⁿ⁺¹→ ℝ. Then show that the Gauss map maps S on to the unit sphere Sⁿ.
 - b) Define a geodesic and show that a geodesic have constant speed.
- a) Let S denote the cylinder x₁² + x₂² = r² of radius r > 0 in ℝ³. Show that α is a geodesic of S if and only if α is of the form α(t) = (rcos(at + b), rsin(at + b), ct + d) for some a, b, c, d ∈ ℝ.
 - b) Define Levi-Civita parallel vector field on a surface S. Also state and prove five properties of the Levi-Civita parallelism.
 - c) Find the Weingarten map of the cylinder $x_1^2 + x_2^2 = a^2$ of radius a > 0 in \mathbb{R}^3 .
- a) Show that every oriented plane curve has a local parametrization and the local parametrization of a plane curve is unique up to re-parametrization.
 - b) Let C be a circle $f^{-1}(r^2)$ where $f(x_1, x_2) = (x_1 a)^2 + (x_2 b)^2$ oriented by the outward normal $\frac{\nabla f}{||\nabla f||}$. Then obtain a global parametrization of C.

Unit – III

- a) Let C be an oriented plane curve. Then prove that there exist a global parametrization of C if and only if C is connected.
 - b) Show that a line integral is invariant under re-parametrization.
- 14. a) Give an example of a 1-form on $\mathbb{R}^2 \{0\}$, which is not exact.
 - b) Let S be an oriented n-surface in \mathbb{R}^{n+1} and let v be a unit vector in S_p , $p \in S$. Then prove that there exist an open set $V \subset \mathbb{R}^{n+1}$ containing p such that $S \cap \mathcal{N}(v) \cap V$ is a plane curve. More over show that the curvature at p of this curve, (suitably oriented) is equal to the normal curvature $\mathcal{K}(v)$.
- 15. a) On each compact oriented n-surface S in \mathbb{R}^{n+1} prove that there exist a point p such that the second fundamental form at p is definite.
 - b) Let $\varphi : U \to \mathbb{R}^{n+1}$ be a parametrized n-surface in \mathbb{R}^{n+1} and let $p \in U$. Then prove that there exist an open set $U_1 \subset U$ about p such that $\varphi(U_1)$ is an n-surface in \mathbb{R}^{n+1} .