

Reg. No. :

Name :

V Semester B.Sc. Degree CBCSS (OBE) Regular Examination, November 2021 (2019 Admn. Only) CORE COURSE IN MATHEMATICS 5B09MAT : Vector Calculus

LIERARY

ND SCIEN

Time : 3 Hours

Max. Marks: 48

PART – A

Short Answer

(Answer any four)

 $(1 \times 4 = 4)$

1. Find the parametric equations for the line through (3, 1, 2) and (2, 1, 6).

- 2. State and prove chain rule for vector functions.
- Find the directional derivative of F(x, y, z) = xy² 4x²y + z² at (1, -1, 2) in the direction of 6i + 2j + 3k.
- 4. Evaluate $\oint_{C} x dx$ where C is the circle x = cost, y = sint, $0 \le t \le 2\pi$.
- 5. If $F = (x^2y^3 z^4)i + 4x^5y^2zj y^4z^6k$ find curl F.

PART – B

Short Essay

(Answer any eight)

(2×8=16)

- 6. A helicopter is to fly directly from a helipad at the origin in the direction of the point (1,1,1) at a speed of 60 ft sec. What is the position of the helicopter after 10 sec ?
- 7. A projectile is launched from ground level with an initial speed $v_0 = 768$ ft/s. at an angle $\theta = 30^{\circ}$. What is the range and maximum height attained by the projectile ?

K21U 4554

K21U 4554

-2-

- 8. Show that if $u = u_1i + u_2j + u_3k$ is a unit vector, then the arc length parameter along the line $r(t) = (x_0 + tu_1)i + (y_0 + tu_2)j + (z_0 + tu_3)k$ from the point $P_0(x_0, y_0, z_0)$ where t = 0 is t itself.
- 9. Find the linearization of $f(x, y) = x^2 xy + x^5y^2 + y^4$ at the point (2, 1).
- 10. Find the local extreme values of $f(x, y) = y^2 x^2$.
- 11. Find the least squares line for the points (0, 1), (1, 3), (2, 2), (3, 4), (4, 5).
- 12. Prove the orthogonal gradient theorem.
- 13. A coil spring lies along the helix r(t) = 2cost i + 2sint j + tk, $0 \le t \le 2\pi$ with constant density δ . Find the spring's mass and center of mass, and its moment of inertia and radius of gyration about the z-axis.
- 14. Find work done by force F = yz i + xz j + xy k acting along the curve given by $r(t) = t^3 i + t^2 j + tk$ from t = 1 to t = 3.
- 15. Prove closed property of conservative fields.
- 16. Show that ydx + xdy + 4dz is exact and evaluate the integral $\int ydx + xdy + 4dz$ over the line segment from (1, 1, 1) to (2, 3, -1).

PART – C

Essay

(Answer any four)

 $(4 \times 4 = 16)$

- 17. The position of a moving particle is given by r(t) = 2cost i + 2sint j + 3tk. Find the tangential, normal and binormal vectors. Also determine the curvature.
- 18. A delivery company accepts only rectangular boxes the sum of whose length and girth (perimeter of a cross-section) does not exceed 108 in. Find the dimensions of an acceptable box of largest volume.
- 19. Find the maximum and minimum values of the function f(x, y) = 3x y on the circle $x^2 + y^2 = 4$ using Lagrange multiplier's.

a.,

K21U 4554

- 20. Given $F(x, y) = (y^2 6xy + 6) i + (2xy 3x^2 2y) j$. Determine a potential function for F.
- 21. How are the constants a, b and c related if the following differential form is exact ? (ay² + 2czx) dx + y(bx + cz) dy + (ay² + cz²) dz.
- 22. Calculate the outward flux of the field $F(x, y) = xi + 3y^2 j$ across the square bounded by the lines $x = \pm 2$ and $y = \pm 2$.
- 23. Find the surface area of sphere of radius a.

PART - D

Long Essay

(Answer any two)

 $(2 \times 6 = 12)$

- 24. a) Show that the curvature of a circle with radius a is $\frac{1}{a}$.
 - b) Find and graph the osculating circle of the parabola $y = x^2$ at the origin.
- 25. a) State Taylor's formula for f(x, y) at the origin and at point (a, b).
 - b) Find a quadratic approximation to $f(x, y) = \sin x \sin y$ near the origin. How accurate is the approximation if $|x| \le 0.2$ and $|y| \le 0.4$?
- 26. a) Find the flux and circulation of the field F(x, y) = (x y)i + xj around the circle $x^2 + y^2 = 1$.
 - b) Evaluate $\oint_C (x^2 y^2) dx + (2y x) dy$ where C consists of the boundary of the region in the first quadrant that is bounded by the graphs of $y = x^2$ and $y = x^3$.
- 27. a) Find the area of the cap cut from the hemisphere $x^2 + y^2 + z^2 = 2$, $z \ge 0$ by the cylinder $x^2 + y^2 = 1$.
 - b) Evaluate $\oint_c zdx + xdy + ydz$ where C is the trace of the cylinder $x^2 + y^2 = 1$ in the plane y + z = 2. Orient C counter clockwise as viewed from above.