K24P 0863

Reg. No. :

Name :

Second Semester M.Sc. Degree (C.B.S.S. – Supple. (One Time Mercy Chance)/Imp.) Examination, April 2024 (2017 to 2022 Admissions) MATHEMATICS MAT2C08 : Advanced Topology

Time : 3 Hours

Max. Marks : 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks. (4×4=16)

- 1. Define compact topological space. Give an example.
- Define uniformly continuous functions on metric spaces. Give an example of a continuous but not uniformly continuous function with justification.
- 3. Show by an example that the open continuous image of a Hausdorff space need not be Hausdorff.
- 4. Prove that the Moor plane is not normal.
- 5. Define homotopy. Give an example.
- 6. Let (X, τ) be a topological space and let $x_0 \in X$. Furthermore, let $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \Omega(X, x_0)$ and suppose $\alpha_1 = \alpha_2$ and $\beta_1 = \beta_2$. Then prove that $\alpha_1 \star \beta_1 = \alpha_2 \star \beta_2$.

PART - B

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks. (4×16=64)

Unit – I

 a) State the Bolzano-Weierstrass property on a topological space. Let (X, d) be a metric space that has the Bolzano-Weierstrass property. Then prove that (X, d) is totally bounded.

K24P 0863

b) Define T, space. Let (X, τ) be a T, space, let A ⊆ X and let p be a limit point of A. Then prove that every neighbourhood of p contains an infinite number of distinct members of A.

-2-

- c) Let (X, τ) be a T₁ space. Then prove that X is countably compact if and only if it has the Bolzano-Weierstrass property.
- 8. a) Prove that every closed subset of a compact space is compact.
 - b) Prove that a topological space (X, τ) is compact if and only if every family of closed subsets of X with the finite intersection property has a nonempty intersection.
 - c) Let (X, τ) be a topological space and let B be a basis for τ . Then prove that (X, τ) is compact if and only if every cover of X by members of B has a finite subcover.
- 9. a) With detailed explanation, give an example of a countably compact topological space which is not compact.
 - b) Prove that every closed subspace of locally compact Haus-dorff space is locally compact.
 - c) With suitable example, show that the continuous image of a locally compact space need not be locally compact.

Unit – II

- 10. a) Let (X, τ) be a topological space. Then prove that the following statements are equivalent.
 - i) (X, τ) is a T, space.
 - ii) For each $x \in X$, $\{x\}$ is closed.
 - iii) If A is any subset of X, Then $A = \cap \{ U \in F : A \subseteq U \}$.
 - b) Let (X, τ) be a topological space, let (Y, U) be a Hausdorff space and let f: X → Y be continuous. Then prove that {(x₁, x₂) ∈ X × X : f (x₁) = x₂} is a closed subset of X × X.
 - c) Prove that completely regular is a topological property.

11. a) Prove that a Hausdorff space (X, τ) is locally compact if and only if for each p ∈ X and each neighborhood V of p there is a neighborhood U of p such that U is compact and U ⊆ V.

-3-

- b) Prove that every subspace of regular space is regular.
- c) Let $\{(X_{\alpha}, \tau_{\alpha}) : \alpha \in \Lambda\}$ be a family of topological spaces, and let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$. Then prove that (X, τ) is regular if and only if $(X_{\alpha}, \tau_{\alpha})$ is regular for each $\alpha \in \Lambda$.
- 12. a) Let (X, τ) be a topological space with a dense subset D and a closed, relatively discrete subset C such that $P(D) \le C$. Then prove that (X, τ) is not normal.
 - b) Prove that every second countable regular space is normal.

Unit - III

- 13. By proving the necessary lemmas, show that every normal space is completely regular.
- 14. State and prove Alaxander Subbase theorem.
- 15. a) Let (X, τ) be a topological space and let D be a dense subset of I. Suppose that for each t ∈ D, there is an open set U, in X such that :
 - 1) if $t_1 < t_2$ then $\overline{U_{t_1}} \subseteq U_{t_2}$ and
 - 2) $X = U_{t \in D} \cup_{t}$. Define $f : X \to I$ by $f(x) = glb \{t \in D : x \in U_t\}$ for each $x \in X$. Then prove that f is continuous.
 - b) Let (X, d) be a compact metric space, let (Y, U) be a Hausdorff space and let f : X → Y be a continuous function that maps X onto Y. Then prove that (Y, U) is metrizable.