K23P 3298

Reg. No. :

Name :

First Semester M.Sc. Degree (CBSS-Supple. (One Time Mercy Chance)/Imp.) Examination, October 2023 (2017 to 2022 Admissions) MATHEMATICS MAT1C04 : Basic Topology

Time : 3 Hours

Max. Marks : 80

PART - A

Answer four questions from this Part. Each question carries 4 marks.

- 1. Let A be a subset of a topological space (X, \mathcal{I}). Prove that $\overline{A} = A \cup A'$.
- 2. Let A and B be subsets of a topological space (X, J). Prove that
 - i) A is open if and only if A = int (A).
 - ii) int (A) \cup int (B) \subseteq int (A \cup B).
- 3. Let A be a subset of a topological space (X, \mathcal{I}). Prove that \mathcal{I}_A is a topology on A.
- 4. Prove that every subspace of a separable metric space is separable.
- Prove that a topological space (X, J) is connected if and only if it cannot be expressed as the union of two nonempty sets that are separated in X.
- 6. Prove that a topological space is locally pathwise connected if and only if each path component of each open set is open.

PART-B

Answer four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit – I

- 7. a) Prove that a family 3 of subsets of a set X is a basis for some topology on X if and only if :
 - i) $X = \bigcup \{B : B \in \mathfrak{A}\}$ and
 - ii) If B_1 , $B_2 \in \mathfrak{S}$ and $x \in B_1 \cap B_2$, then there exists $B \in \mathfrak{S}$ such that $x \in B$ and $B \subseteq B_1 \cap B_2$.

P.T.O.

- c) Let X be a set and let 𝒴 be a collection of subsets of X such that X = ∪{S : S ∈ 𝒴}. Prove that there is a unique topology 𝒯 on X such that 𝒴 is a sub-basis for 𝒯.
- 8. a) Let (X, d) be a metric space, and define d : X × X → R by d (x, y) = min {d(x, y), 1}. Prove that d is a metric on X and the topology induced by d is the topology induced by d.
 - b) Prove that every separable metric space is second countable.
 - c) Give an example of a separable space which is not second countable.
- 9. a) Let A be a subset of a metric space (X, d). Prove that the following statements are equivalent :
 - i) A is nowhere dense.
 - ii) If U is nonempty open subset of X, then there exists a nonempty open set V such that $V \subset U$ and $V \cap \overline{A} = \emptyset$.
 - iii) Every nonempty open set in X, contains an open ball whose closure is disjoint from A.

b) State and prove Baire Category theorem.

Unit – II

- a)-Let A be a closed subset of a topological space (X, J). If C is closed in (A, J_A), prove that C is closed in (X, J).
 - b) State and prove Pasting lemma.
 - c) Prove that the function $f : \mathbb{R} \to \mathbb{R}^2$ defined by f(x) = (x, 0) is an embedding of \mathbb{R} in \mathbb{R}^2 .

11. a) Let (X₁, d₁) and (X₂, d₂) be metric spaces, for each i = 1, 2 let *I*_i be the topology on X_i generated by d_i and let *I* denote the product topology on X = X₁ × X₂. Furthermore let *ℓ* denote the topology on X generated by the product metric d. Prove that *I* = *ℓ*.

-3-

- b) Let (X, J), (Y₁, ℓ₁) and (Y₂, ℓ₂) be topological spaces and let f : X → Y₁ × Y₂ be a function. Prove that f is continuous if and only if π_iof is continuous for each i = 1, 2.
- c) Prove that the function $h : \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ defined by $h(x) = (x^2 + 4, x^3 2x + 6)$ is continuous.
- 12. a) Let {(X_α, J_α) : α ∈ Λ} be an indexed family of topological spaces, and for each α ∈ Λ, let (A_α, J_{A_α}) be a subspace of (X_α, J_α). Then prove that the product topology on ∏A_α is the same as the subspace topology on ∏A_α is determined by the product topology on ∏X_α.
 - b) Let $\{(X_{\alpha}, \mathcal{I}_{\alpha}) : \alpha \in \Lambda\}$ be a collection of topological spaces, let X be a set, and for each $\alpha \in \Lambda$ let $f_{\alpha} : X \to X_{\alpha}$ be a function. Let \mathcal{I} be the weak topology on X iduced by $\{f_{\alpha} : \alpha \in \Lambda\}$ and let (Y, \mathscr{U}) be a topological space. Prove that a function $f : Y \to X$ is continuous if and only if for each $\alpha \in \Lambda$, $f_{\alpha} \circ f : Y \to X_{\alpha}$ is continuous.
- 13. a) Let (X, J) be a topological space and let A ⊆ X. Prove that the following conditions are equivalent :
 - , i) The subspace (A, \mathcal{I}_A) is connected.
 - ii) The set A cannot be expressed as the union of two nonempty sets that are separated in X.
 - iii) There does not exist U, $V \in \mathcal{I}$ such that $U \cap A \neq \emptyset$, $V \cap A \neq \emptyset$, $U \cap V \cap A = \emptyset$ and $A \subseteq U \cap V$.

-4-

- b) Prove that $(\mathbb{R}, \mathcal{I})$ is connected, where \mathcal{I} is the usual topology on \mathbb{R} .
- c) Prove that I = [0, 1] has the fixed point property.
- a) Prove that the topologist's sine curve is connected but not pathwise connected.
 - b) Give an example of a pathwise connected space which is not locally connected.
- 15. a) Let {(X_α, J_α): α ∈ Λ} be a collection of topological spaces, and suppose that for each α ∈ Λ, X_α ≠ Ø. Let X = ∏_{α∈Λ} X_α and let J be the product topology on X. Prove that (X, J) is connected if and only if, for each α ∈ Λ, (X_α, J_α) is connected.
- b) Define Cantor set. Prove that the Cantor set is totally disconnected.