

K21P 4706

Reg. No. :

Name :

I Semester M.C.A. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, November 2021 (2020 Admission Onwards) MCA1C01 : DIGITAL FUNDAMENTALS AND COMPUTER ORGANIZATION

Time: 3 Hours

Max. Marks: 60

PART - A

Colle Answer all questions, each question carries two marks

1.	Write a note on Sum of Product form. How will you implement a POS express	sion ?
	Write the steps to convert a Sum Term to Standard POS.	2
2.	Write a note on Encoders. Explain about a Decimal to BCD Encoder.	2
3.	Differentiate Combinational and Sequential circuits.	2
4.	Write a note on Ring Counters.	2
5.	What is addressing mode ? Explain about different addressing modes.	2
6.	Write the differences between RISC and CISC	2
7.	How an instruction is executed ? Explain.	2
8.	Using Booth algorithm multiply 11 * - 6.	2
9.	What is Direct Memory Access ?	2
10.	. What is ROM ? Which are the different types of ROMs ?	2 (10×2=20)
	· · · · · · · · · · · · · · · · · · ·	(

PART-B

Answer all questions, each question carries eight marks.

11. a)	Explain about Multiplexers and De-Multiplexers. Implement a full adder using 8 : 1 MUX. OR	8
b)	Minimize the Boolean expression using Karnaugh map $f(A, B, C, D) = \sum m(1, 3, 7, 11, 15) + d(0, 2, 5)$ and realize it using NAND gates.	8 P.T.O.

K21P 4706

12.	a)) With the help of a block diagram, explain the working of a JK flip flop. How does it eliminate the invalid condition in SR flip flop ? List out its applications.	8
		OR ISOS reditievol noteninex3	
	b)	Implement and explain the working of a 4-bit Parallel-In Serial-Out [PISC Shift Register.	0] 8
13.	a)	With a neat diagram, explain the architecture 8086. OR	8
	b)	What is Instruction Set Architecture ? Explain with a diagram.	8
14.	a)	Explain about the multiplication methods of signed and unsigned numbers.	8
	b)	Explain about the processing unit of a computer.	8
15.	a)	What are interrupts ? Explain about different types of interrupts.	8
	b)	Write a brief note on Pipelining and Parallel processing architecture. (5×	8 :8=40)
		BO AN algorithm multiple 1 - 6. Oli I'A O BO	