

Time : 3 Hours

Max. Marks: 48

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

1. Define an elementary step function on [a, b].

2. State Dini's Theorem.

3. Give an example of a set with unique limit point in the usual metric space R.

Write the smallest topology on X = {a, b, c, d}.

SECTION - B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

5. If $f \in \mathcal{R}[a, b]$ and if $(\dot{\mathcal{P}}_n)$ is any sequence of tagged partitions of [a, b] such that $\|\dot{\mathcal{P}}_n\| \to 0$, then prove that $\int_a^b f = \lim_n S(f; \dot{\mathcal{P}}_n)$.

6. Prove that if $f \in \mathcal{R}[a, b]$, then the value of the integral is unique.

7. State the substitution theorem for Riemann integration.

- 8. Show that the sequence of functions (f_n) defined on [0, 1] by the rule $f_n(x) = x^n$ does not converge uniformly on [0, 1].
- 9. Find the limit function of the sequence of functions $(x^n/(1+x^n))$ defined on [0, 2]. Is the limit function continuous on [0, 2]?
- 10. Prove that in a metric space (X, d) the null set, ϕ and the full set, X are open.

K22U 0130

- 11. Show that in a metric space each closed sphere is a closed set.
- 12. Prove that in a metric space every convergent sequence is a Cauchy sequence.
- 13. Explain the concept of interior of a set in a topological space with an example.
- 14. Prove that in every topological space X, we have $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

SECTION - C

Answer **any 4** questions from among the questions **15** to **20**. These questions carry 4 marks **each**.

- 15. Prove that a function f:[a, b] → ℝ belongs to R[a, b] if and only if for every ∈ > 0 there exists η > 0 such that if φ and ζ are any tagged partitions of [a, b] with ||φ|| < η and ||ζ|| < η, then |S(f; φ) - S(f; ζ)| < ∈.</p>
- 16. State and prove integration by parts for the Riemann integral.
- 17. Find the radius of convergence of $\sum a_n x^n$, where a_n is given by :

i) $\frac{1}{n^{n'}}$

ii) $\frac{n^n}{n!}$ and

iii)
$$\frac{(n!)^2}{(2n)!}$$

- Show that in a metric space a set is open if and only if it is a union of open spheres.
- Prove that any closed subset of a topological space is the disjoint union of its set of isolated points and its set of limit points.

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

- 21. State squeeze theorem and using it prove that, if $f : [a, b] \rightarrow \mathbb{R}$ is continuous on [a, b], then $f \in \mathcal{R}[a, b]$.
- 22. State and prove the Fundamental Theorem of Calculus (Second Form). Deduce that, if f is continuous on [a, b], then its indefinite integral F is differentiable on [a, b] and F'(x) = f(x) for all x ∈ [a, b].
- 23. Define the boundary of a set in a metric space, give an example and show that boundary of A is equal to $\overline{A} \cap \overline{A'}$. Also prove that A is closed if and only if it contains it's boundary.
- 24. If f : X \rightarrow Y is a mapping of one topological space to another, then show that f is continuous if and only if $f(\overline{A}) \subseteq \overline{f(A)}$.