K23U 0515

Reg. No. :

Name :

VI Semester B.Sc. Degree (CBCSS – OBE – Regular/Supplementary/ Improvement) Examination, April 2023 (2019 and 2020 Admissions) CORE COURSE IN MATHEMATICS 6B12MAT : Numerical Methods, Fourier Series and Partial Differential Equations

Time : 3 Hours

Max. Marks: 48

PART - A

Answer any 4 questions. Each question carries one mark.

- 1. Forward difference operator $\Delta f(x_i) =$
- 2. Using Picard's method, obtain a solution up to the second approximation to the equation $\frac{dy}{dx} = 2y x$ such that y(0) = 1.
- 3. Define odd function and give an example.
- 4. Define a periodic function and find the period of $\cos \pi x$.
- 5. Write the Laplacian equation in Polar coordinates.

PART - B

Answer any 8 questions. Each question carries two marks.

6. Find the Lagrange interpolation polynomial for the following data :

x	1	2	4
7(x)	1	7	61

- 7. Find the second divided difference of $f(x) = \frac{1}{x}$, using points x_0, x_1, x_3 .
- 8. Show that $\mu = \sqrt{\left(1 + \frac{1}{4}\delta^2\right)}$.

P.T.O.

K23U 0515

-2-

- 9. Obtain the approximate value of y(1.2) for the initial value problem $y' = -2xy^2$, y(1) = 1 using Taylor series second order with step size h = 0.1.
- 10. Using Euler method, find y(0.02), y' = 2y with y(0) = 1 and h = 0.01.
- 11. Using Heun's method, find y(0.2), $y' = x^2 + y^2$ with y(0) = 1 and h = 0.1.
- 12. State Euler formula for Fourier coefficients.
- 13. Find the Fourier series of f(x) = x, -L < x < L, f(x + 2L) = f(x).
- 14. Verify that the function $u = x^2 + t^2$ is a solution of wave equation with suitable c.
- 15. Solve $u_{x} u = 0$.
- 16. Determine the type and normal form of the PDE $u_{xx} 16u_{yy} = 0$.

PART - C

Answer any four questions. Each question carries four marks.

17. Find In(9.2) with n = 3, using Lagrange interpolation formula with the given table :

x	9.0	9.5	10	11.0
Inx	2.19722	2.25129	2.30259	2.39790

18. Using divided differences interpolation, find f(x) as a polynomial if

X	- 3	- 2	2-1	1	2	3>
f(x)	18	12	8	6	8	12

19. Construct Newton's Backward Interpolation, table and Interpolating polynomial for the data :

X	- 4	- 2	0	2	4	6
f(x)	- 139	- 21	1	23	141	451

20. Using Picard's method, obtain a solution up to the fourth approximation to the equation $\frac{dy}{dx} = y + x$ such that y(0) = 1.

- 21. Given $\frac{dy}{dx} = 1 + y^2$ where y(0) = 0. Find y(0.2) correct to four decimal places by Runge-Kutta second order formula.
- 22. Find the Fourier series of the function $f(x) = |x|, -2 \le x \le 2$ and f(x + 4) = f(x).
- 23. Consider the elastic string of length L whose ends are held fixed the string is set in motion from its equilibrium position with an initial velocity.

$$u_t(x, 0) = g(x) \begin{cases} \frac{2x}{L} & , \quad 0 \le x \le \frac{L}{2} \\ \frac{2(L-x)}{L} & , \quad \frac{L}{2} \le x \le L \end{cases}$$

ncect Find the displacement u(x, t) of the string.

PART

Answer any two questions. Each question carries six marks.

24. Using Lagrange interpolation, obtain the value of e-0.15. Determine the maximum absolute error at this point. Compare it with actual error. If

X	0.1	0.2	0.4
$f(x) = e^x$.904837	.818731	.670320

25. Use Runge-Kutta fourth-order method with h = 0.2 to find the value of y at x = 0.2 and x = 0.4, given $\frac{dy}{dx} = 1 + y^2$ where y(0) = 0.

26. Find the Fourier series of the function $f(x) = \langle x \rangle$

x ,
$$\frac{-\pi}{2} < x \le \frac{\pi}{2}$$

($\pi - x$), $\frac{\pi}{2} < x < \frac{3\pi}{2}$.

27. Dérive D'alembert solution of wave equation.