

K21U 0901

Reg. No. :

Name :

IV Semester B.Sc. Degree (CBCSS - Sup./Imp.) Examination, April 2021 (2014 - 18 Admissions) COMPLEMENTARY COURSE IN STATISTICS 4C04STA - Statistical Inference

DECO ANTS AND SCIE

LIBRARY

Time : 3 Hours

Max. Marks: 40

(Use of calculators and Statistical tables are permitted.)

PART - A: Short Answer

Answer all the 6 questions.

- Distinguish between null and alternative hypothesis.
- 2. What is meant by confidence interval ?
- 3. What is a statistical hypothesis ? Give an example.
- 4. Mention the test and test statistic employed for testing whether population mean has a specified value in case of large samples.
- Define unbiased estimator.
- 6. How sufficiency is related to conditional distribution ?

 $(6 \times 1 = 6)$

PART - B : Short Essay

Answer any 6 questions.

- 7. Obtain the confidence interval for the mean of a normal population when variance is known.
- 8. Explain the method of moment estimation.

K21U 0901

- The lengths in inches of 5 screws made by a machine are 2.0, 2.1, 1.9, 2.2 and 2.3. Examine whether the average length of screws produced by this machine is 2 at 5% level of significance.
- 10. Show that sample mean is the sufficient estimator for the Poisson parameter.
- 11. A manufacturing process is expected to produce goods with a specified weight with variance less than 5 units. A random sample of 10 was found to have variance 6.2 units. Is there reason to suspect that the process variance has increased (use $\alpha = 0.05$)?
- 12. Let \overline{X} be the mean of n random samples taken from N (μ , σ) and s² be the sample variance. Show that $\frac{(\overline{x} \mu)\sqrt{n-1}}{s} \rightarrow t_{(n-1)dt}$.
- 13. For the random sample $X_1, X_2, ..., X_n$ taken from Poisson population with parameter λ . Show that $\frac{n\overline{x}}{n+1}$ is a biased estimator of λ .
- 14. Derive the m.g.f. of χ^2 distribution.

(6×2=12)

PART – C : Essay

Answer any 4 questions.

15. Describe the paired sample t test.

16. Mention the important properties of maximum likelihood estimators.

- 17. To test $H_0: \theta = 1$ against $H_1: \theta = 2$, a random sample of size one is taken from an exponential distribution with parameter θ . Compute probabilities of two types of error and power of the test for the critical region, $X \ge 1$.
- 18. Show that the sample mean \overline{X} is a consistent for the population mean in random sampling from N (μ , σ).

19. State the interrelation among normal, Chi-square, t and F distributions.

20. If X₁ and X₂ are two independent standard normal variates. Prove that $t = \frac{\sqrt{2} X_1}{\sqrt{X_1^2 + X_2^2}}$ follows t distribution with 2 degrees of freedom. (4×3=12)

K21U 0901

PART – D : Long Essay

Answer any 2 questions.

- 21. a) Distinguish between point estimation and interval estimation with examples.
 - b) Obtain the 95% confidence interval for $\mu_1 \mu_2$ if samples are taken from two normal populations with $\overline{x}_1 = 20$, $\overline{x}_2 = 16$, $\sigma_1^2 = 9$, $\sigma_2^2 = 16$, $n_1 = 30$ and $n_2 = 50$.
- a) Explain the test procedure for testing equality of population proportions based on large samples.
 - b) What are the uses of t distribution ?
- 23. a) Explain the chi-square test for independence of attributes.
 - b) The observed frequencies of cells such as (1,1), (1,2), (1,3), (2,1), (2,2), and (2,3) are respectively 40, 35, 55, 30, 65 and 75. Obtain the value of χ^2 statistic.
- a) Derive the sampling distribution of mean of samples taken from a normal population N(μ, σ).
 - b) A random sample of size 25 is taken from a normal population with mean 1 and variance 9. What is the probability that the sample mean is negative ?

 $(2 \times 5 = 10)$