

K25U 1325

Reg. No. :

Name :

Second Semester B.Sc. Degree (C.B.C.S.S. – OBE – Supplementary/ Improvement) Examination, April 2025 (2019 to 2023 Admissions) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 2C02 MAT-BCA : Mathematics for BCA – II

Time : 3 Hours

Max. Marks: 40

UNIT - I

Short answer type. Answer any 4 questions. Each question carries 1 mark. (4×1=4)

- 1. Let $f(x, y) = x^2y + 1$. Find f(2, 1).
- 2. Find $\lim_{(x,y)\to(3,4)} \sqrt{x^2 + y^2}$ -
- 3. Evaluate $\int \cos^4 x \, dx$.
- 4. Define a circle in polar co-ordinates.
- 5. Define similarity transformation of matrices.

UNIT-II

Short essay type. Answer any 7 questions. Each question carries 2 marks. (7×2=14)

- 6. Find the domain and range of the function $f(x, y, z) = \frac{1}{xvz}$.
- 7. Find the value of f_x at the point $\left(2, \frac{\pi}{4}\right)$ if $f(x, y) = x \sin xy$.
- 8. Find $\frac{dw}{dt}$ if w = xy + z, x = cost, y = sint, z = t. What is the derivative's value at $t = \frac{\pi}{2}$.
- 9. Evaluate $\int_{0}^{\pi/6} \sin^6 3x dx$.

P.T.O.

- 10. Find $\int_{0}^{\frac{\pi}{2}} \cos^6 x \, dx$.
- 11. Find the volume of the solid generated by revolving the region between the y-axis and the curve x = 2/y, $1 \le y \le 4$, about the y-axis.

-2-

- 12. Find the area bounded between the curve $y = x^2$ above the x-axis and below the line y = 2.
- 13. When can you say that a quadratic form is negative definite ?
- 14. Find the eigen values of the matrix $\begin{bmatrix} 3 & 0 & 0 \\ 5 & 4 & 0 \\ 3 & 6 & 1 \end{bmatrix}$.
- 15. Show that the matrices $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 6 & 0 \\ 0 & 1 \end{bmatrix}$ are similar.

UNIT - III

Essay type. Answer any 4 questions. Each question carries 3 marks. (4×3=12)

- 16. Show that the function $f(x, y) = \log_e (1 + x^2 + y^2) + e^x \cos y$ is continuous everywhere in the plane.
- 17. If $I_n = \int_0^a (a^2 x^2)^n dx$ and $n \neq 0$, prove that $I_n = \frac{2na^2}{2n+1}I_{n-1}$.
- 18. Evaluate $\int_{0}^{2a} x^{3} (2ax x^{2})^{3/2} dx$.
- 19. The region between the curve $y = \sqrt{x}$, $0 \le x \le 4$ and the x-axis is revolved about the x-axis to generate a solid. Find its volume.
- 20. Find a polar equation for the circle $x^2 + (y 3)^2 = 9$.
- 21. Find a linearly independent eigen vectors of the matrix $\begin{bmatrix} 3 & 2 \\ -5 & -4 \end{bmatrix}$ and diagonalize it.
- 22. Prove that 0 is a characteristic root of a matrix if and only if the matrix is singular.

K25U 1325

UNIT – IV

-3-

Long essay type. Answer any 2 questions. Each question carries 5 marks. $(2 \times 5 = 10)$ 23. Show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial v} = 2u \log u$ where $\log u = (x^3 + y^3)/(3x + 4y)$. 24. If $I_n = \int_{0}^{\pi/3} \tan^n x \, dx$ show that $(n-1)(I_n + I_{n-2}) = (\sqrt{3})^{n-1}$. 25. Evaluate $\int_{0}^{4} \int_{0}^{2\sqrt{2}} \sqrt{4z-x^2} \, dz \, dx \, dy$. 25. Evaluate $\int_{0}^{4} \int_{0}^{\sqrt{2}} \int_{0}^{\sqrt{4z-x^2}} dz dx dy$ 26. If $A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$ find A² using Cayley Hamilton theorem and then find A³. pon Bos Anglandonio Car