

K21P 0785

Reg. No. :

Name :

II Semester M.Sc. Degree (CBSS – Reg./Suppl. (Including Mercy Chance)/Imp.) Examination, April 2021 (2017 Admission Onwards) MATHEMATICS MAT2C08 : Advanced Topology

LIERARY

Time : 3 Hours

Max. Marks : 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks.

- 1. Is a bounded metric space necessarily totally bounded ? Justify your answer.
- Show that the real line with the usual topology is locally compact but not compact.
- 3. Give an example of a T_o-space that is not a T₁-space.
- 4. Let X = {1, 2, 3} and $\tau = \{\phi, \{1\}, \{1, 3\}, X\}$. Determine whether (X, τ) is a regular space.
- 5. For each $n \in \mathbb{N}$, let (X_n, d_n) be a metric space. Assume $d_n(x_n, y_n) \le 1$ for each

 $n \in \mathbb{N}$ and all $x_n, y_n \in X_n$. Show that there is a metric on $X = \prod X_n$.

6. Show that every contractible space is pathwise connected.

 $(4 \times 4 = 16)$

PART – B

Answer **any four** questions from this Part without omitting **any** Unit. **Each** question carries **16** marks.

Unit – I

- a) When is a metric space said to be totally bounded ? Prove that every totally bounded metric space is bounded.
 - b) Prove that a metric space is compact if and only if it is complete and totally bounded.
- a) Let (X, τ) be a compact space, (Y, U) be a Hausdorff space and let f : X→Y be a continuous function. Prove that f is a closed mapping.
 - b) Let (X, τ) be a topological space and let \mathcal{B} be a basis for τ . Prove that (X, τ) is compact if and only if every cover of X by members of \mathcal{B} has a finite subcover.
 - c) Prove that the product of two compact spaces is compact.

K21P 0785

- a) Prove that every closed subspace of a locally compact Hausdorff space is locally compact.
 - b) Let $\{(X_{\alpha}, \tau_{\alpha}) : \alpha \in \land\}$ be a collection of spaces, and let τ be the product topology on $X = \prod_{\alpha \in \land} X_{\alpha}$. Prove that (X, τ) is locally compact if and only if for each $\alpha \in \land, (X_{\alpha}, \tau_{\alpha})$ is locally compact and for all but a finite number of $\alpha \in \land, (X_{\alpha}, \tau_{\alpha})$ is compact.

Unit – II

- a) Prove that a T₁-space (X, τ) is regular if and only if for each member p of X and each neighborhood U of p there is a neighborhood V of p such that V
 ⊆ U.
 - b) Prove that every subspace of a regular space is regular.
 - c) Define a complete regular space and prove that every completely regular space is regular.
- a) Let (X, ≤) be a well ordered set, and let τ denote the order topology on X. Prove that (X, τ) is a normal space.
 - b) Prove that a T₁ space (X, τ) is completely normal if and only if every subspace of it is normal.
- a) Prove that every second countable space is Lindelof. Show by an example that a second countable space need not be Lindelof.
 - b) Prove that every regular Lindelof space is normal.

Unit – III

- 13. a) State and prove Urysohn's lemma.
 - b) Deduce that every normal space is completely regular.
- 14. a) State and prove Tychonoff theorem.
 - b) Let (X, τ) be a T₁-space. Prove that (X, τ) is regular and second countable if and only if it is a separable metric space.
- 15. a) Let (X, τ) be a topological space and let $x_0 \in X$. Also let $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \Omega(X, x_0)$ and suppose $\alpha_1 = \alpha_2$ and $\beta_1 = \beta_2$. Prove that $\alpha_1 * \beta_1 = \alpha_2 * \beta_2$.
 - b) Let (X, τ) be a topological space, let $x_0 \in X$ and let α , β , $\gamma \in \pi_1(X, x_0)$. Prove that $([\alpha] \circ [\beta]) \circ [\gamma] = [\alpha] \circ ([\beta] \circ [\gamma])$. (4×16=64)