K21U 6558

Reg.	No.	:	 	 	•••••	
Nam	e :		 	 		

I Semester B.Sc. Degree (C.B.C.S.S. – Supplementary) Examination, November 2021 (2017-2018 Admissions) CORE COURSE IN MATHEMATICS 1B01MAT : Differential Calculus

LIBRARY

Time : 3 Hours

Max. Marks: 48

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each :

- 1. If p(x) is a polynomial in x, then $\lim_{x \to \infty} p(x) = .$
- 2. State Sandwich theorem.
- 3. Write the domain of the function $w = \sqrt{y x^2}$.
- 4. Find the equation of the level curve of $f(x, y) = 16 x^2 y^2$ that passes through $(2\sqrt{2}, \sqrt{2})$.

SECTION - B

Answer any 8 questions from among the 5 to 14. These questions carry 2 marks each :

- 5. Show that $D^n \sin(ax + b) = a^n \sin(ax + b + n\frac{\pi}{2})$.
- 6. Find all the polar coordinates of the point $\left(2, \frac{\pi}{6}\right)$.
- 7. Translate the equation $x^2 + y^2 + (z \frac{1}{2})^2 = \frac{1}{4}$ into cylindrical and spherical coordinate systems.

K21U 6558

8. Find the rectangular and cylindrical coordinates corresponding to $(\sqrt{2}, \pi, \frac{\pi}{2})$.

9. Sketch the set of points whose cylindrical coordinates satisfies $r = 2\cos\theta$.

10. Find the Maclaurin series of log(1 + x).

11. Show that Rolle's theorem is a particular form of Lagranges mean value theorem.

12. Find the critical points of the function $f(x) = x^4 - 4x^3 + 4x^2$.

- 13. Evaluate $\lim_{x \to 0} (e^x + x)^{\frac{1}{x}}$.
- 14. Find f_x and f_y if $f(x, y) = \frac{2y}{y + \cos x}$.

SECTION - C

Answer any 4 questions from among the 15 to 20. These questions carry 4 marks each :

- 15. If $y = e^{ax}sin bx$, prove that $y_2 2ay_1 + (a^2 + b^2)y = 0$.
- 16. Show that $\cosh^2 x \sinh^2 x = 1$.
- 17. Find the radius of curvature at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ of the curve $x^3 + y^3 = 3axy$.
- 18. Prove that $r = a(1 + \cos\theta)$ and $r = b(1 \cos\theta)$ intersect at right angles.
- 19. Show that $f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$ is continuous at every point except the origin.

20. Evaluate
$$\frac{\partial W}{\partial r}$$
 and $\frac{\partial W}{\partial s}$ if $w = x + 2y + z^2$, $x = \frac{r}{s}$, $y = r^2 + \log_e s$, $z = 2r$.

SECTION - D

Answer **any 2** questions from among the **21** to **24**. These questions carry **6** marks **each** :

21. Discuss the continuity of f at x = 0, 1, 2, 3 and 4.

- Show that the evolute of the cycloid x = a(θ sinθ), y = a(1 cosθ) is another equal cycloid.
- 23. Graph the function $y = x^3(8 x)$.
- 24. If z be a homogeneous function of x, y of order n, then show that

 $x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} = n(n-1)z,$