K18P 1392

Reg. No. :

Name :

First Semester M.C.A. Degree (Reg./Suppl./Imp.) Examination, December 2018 (2014 Admn. Onwards) MCA 1C01 : Discrete Mathematics

Time : 3 Hours

Max. Marks: 80

Instructions : 1) Answer any ten questions from Section – A. Each question carries three marks.

> Answer all questions from Section – B. Each question carries ten marks.

> > OSECTION - A

Note : Answer any ten questions. Each question carries three marks.

- 1. Define logical equivalence. Show that ~ (pvq) and (~p) (~q) are logically equivalent.
- Define tautology and contradiction. State whether the formula (P → Q) ∨ (Q → P) in a tautology or contradiction.
- Express (P∧Q) ∨ (Q∧R) in disjunctive normal form.
- Define Cartesian product of two sets A and B. If A {1} and B = {a, b}, C = {2, 3} find B² and B² × A.
- 5. Draw the Venn diagram for $(A B) \cup (B C) \cup (A C)$.
- 6. Define one-to-one function along with an example.
- 7. What is an equivalence relation ? Let A = {1, 2, 3, 4} be a set and R be an equivalence relation on A such that A/R = {{1, 2}, {3, 4}}. Write R.
- If A = {1, 2, 3, 4, 5} and R is a relation defined on A R : { (a, b) : a|b}. Find R° and R⁻¹.
- 9. How many different 15 persons committees can be formed each containing at least 4 Project Managers and at least 3 Programmers from a set of 10 Project Managers and 10 Programmers ?
- State Pigeon hole principle. Using this principle show that in any group of 36 people, we can always find 6 people who were born on the same day of week.

K18P 1392

-2-

11. Define closure of graph with an example.

12. Define Hamiltonian and Eulerian graphs.

SECTION - B

Note : Answer all questions. Each question carries ten marks.

13.	a)	i)	Define proposition. Prove that the following compound proposition is a tautology. (($P \Rightarrow Q$) \land ($Q \Rightarrow R$) \Leftrightarrow ($P \Rightarrow R$)).	5
		ii)	Write the principal disjunctive normal form of i) $P \Rightarrow Q$ ii) ~ ($P \land Q$).	5
		,	OR CI 21	Ŭ,
	b)	i)	Show that S v R is tautologically implied by	
			$(P \lor Q) \land (P \to R) \land (Q \to S).$	6
		ii)	Obtain principal conjunctive normal form of	
			$((P \to (Q \land R) \land (P \hookrightarrow (P \hookrightarrow (P \land R))), Q \land R)))$	4
14.	a)		If $f : A \to B$, $g : B \to C$ and $h : C \to D$, prove that (hog) of = ho (gof).	6
		ii)	If A, B, C be any three sets, then using Venn diagram, prove that $A - (B \cup C) = (A - B) \land (A - C).$	4
×	b)		If $f : A \to B$ and $g : B \to C$ be one to one onto function, then prove that	
		0	$((gof)^{-1} = f^{-1} \circ g^{-1})$	6
		п)	If A = {1, 4}, B = {4, 5} C = {5, 7} verify that A × (B \cap C) = (A × B) \cap (A × C).	4
15.	a)	i)	Let R be a relation defined on I such that $a \equiv b \mod 3$. Check whether R is an equivalence relation. If so, find out the partition on I.	5
		ii)	Explain Warshall's algorithm with suitable example.	5
		55	OR	
	b)	i)	Let A = {1, 2, 3, 4, 5}. Define a relation R on A × A by $(x_1, y_1) R (x_2, y_2)$ iff $x_1 + y_1 = x_2 + y_2$. i) Verify that R is an equivalence relation on A × A.	6
			ii) Determine the equivalence classes of [(1, 3)], [(2, 4)] and [(1, 1)].	
		ii)	For the sets A = {a, b, c} and B = {1, 2, 3} and the relations R = {(a, 1), (b, 1), (c, 2) (c, 3)} and S = { (a, 1), (a, 2), (b, 1), (b, 2)} from A to B compute $M_{(R \cap S)}$, $M_{(R \cup S)}$, $M_{(R \cup S)}$, $M_{(S)}$.	4

