

K21P 1070

Reg. No. :

III Semester M.Sc. Degree (CBSS – Reg./Suppl./Imp.) Examination, October 2021 (2018 Admission Onwards) MATHEMATICS MAT 3C13 : Complex Function Theory

LIBRARY

Time : 3 Hours

Max. Marks : 80

PART - A

Answer any four questions. Each question carries 4 marks.

BOSS

- Prove that the period module of a function f(z) which is nonconstant and meromorphic in the whole plane is discrete.
- 2. Prove that the sum of residues of an elliptic function is zero.
- 3. Show that the complex plane $\mathbb C$ and the disc $D=\{z:|z|<1\}$ are homeomorphic.
- 4. Define
 - i) function element
 - ii) germ
 - iii) analytic continuation along a path.
- 5. Show that any two harmonic conjugates of a given harmonic function in a simply connected region differ by a constant.
- Define subharmonic and superharmonic functions. Also state the maximum principle for subharmonic functions. (4×4=16)

P.T.O.

PART – B

Answer any four questions without omitting any Unit. Each question carries 16 marks.

Unit – I

- 7. a) Prove that a discrete module consists either of zero alone, of the integral multiples nw of a single complex number $w \neq 0$, or of all linear combinations $n_1w_1 + n_2w_2$ with integral coefficients of two numbers w_1 , w_2 with nonreal ratio w_2/w_1 .
 - b) If $a_1, a_2, ..., a_n$ are zeros and $b_1, b_2, ..., b_n$ are poles of an elliptic function in a period parallelogram, prove that $(a_1 + a_2 + ... + a_n) (b_1 + b_2 + ... + b_n)$ is a period.
- 8. a) Define the Weierstrass sigma function $\sigma(z)$ and show that any elliptic function with periods w_1 and w_2 can be written as $C \prod_{k=1}^{n} \frac{\sigma(z-a_k)}{\sigma(z-b_k)}$, where C is a constant.
 - b) With usual notations, prove that the Weierstrass P function satisfies the differential equation $P'(z)^2 = 4 P(z)^3 g_2 P(z) g_3$.
- 9. a) Show that the series $\sum_{n=1}^{\infty} n^{-z}$ represents an analytic function z in the half plane Rez > 1.

b) Derive Reimann's functional equation $\zeta(z) = 2(2\pi)^{z-1}\Gamma(1-z)\zeta(1-z)\sin\left(\frac{\pi z}{2}\right)$ for -1 < Rez < 0.

c) State and prove Euler's theorem.

Unit – II

- 10. State and prove Runge's theorem.
- 11. a) State and prove Mittag-Leffler's theorem.
 - b) Find a meromorphic function in the plane with a pole at every integer.
- 12. a) With usual assumptions, when is a function element (f, D) said to admit unrestricted analytic continuation in G? Also state and prove the monodromy theorem.
 - b) Let (f, D) be a function element which admits unrestricted continuation in the simply connected region G. Prove that there is an analytic function F : G → C such that F(z) = f(z) for all z in D.

Unit – III

- 13. a) If $u : G \to \mathbb{C}$ is harmonic, then prove that u is infinitely differentiable.
 - b) Let G be a region and suppose that u is a continuous real valued function on G with the MVP. If there is a point a in G such that u(a) ≥ u(z) for all z in G, then prove that u is a constant function.
 - c) Define the Poisson Kernel P.(θ). Prove that

i)
$$P_r(\theta) = \operatorname{Re}\left(\frac{1+re^{i\theta}}{1-re^{i\theta}}\right) = \frac{1-r^2}{1-2r\cos\theta+r^2}$$

ii) $\int_{-\pi}^{\pi} P_r(\theta) d\theta = 2\pi$.

- 14. a) If $u : G \to \mathbb{R}$ is a continuous function which has the MVP, then prove that u is harmonic.
 - b) State and prove Harnack's theorem.
- 15. a) Let G be a region and $f : \partial_{\alpha} G \to \mathbb{R}$ be a continuous function. Prove that $u(z) = \sup \{\phi(z) : \phi \in P(f, G)\}$ defines a harmonic function u on G.
 - b) Derive Jensen's formula.

 $(4 \times 16 = 64)$