	A NUL STOL
Reg. No. :	SCO AND SCIENC
Name :	LIBRARY
I Semester M.	Sc. Degree (C.B.S.S. 4)

ester M.Sc. Degree (C.B.S.S., Reg./Supple./Imp.) Examination, October 2021 (2018 Admission Onwards) MATHEMATICS MAT1C01 : Basic Abstract Algebra

Time : 3 Hours

Max. Marks: 80

K21P 4209

PART - A

Answer four questions from this Part. Each question carries four marks.

- 1. Prove or disprove "the group $\mathbb{Z}_3\times\mathbb{Z}_3$ is cyclic".
- 2. Let X be a G-set. Prove that G_x is a subgroup of G for each $x\in X.$
- 3. Prove that no group of order 30 is simple.
- 4. Is {(2, 1), (4, 1)} a basis for $\mathbb{Z} \times \mathbb{Z}$? Prove your assertion.
- 5. Write all polynomials of degree \leq 3 in $\mathbb{Z}_3[x].$ How many of them are reducible over \mathbb{Z}_3 ?
- 6. Prove that the pth cyclotomic polynomial is irreducible over 2 for any prime p.

PART – B

Answer 4 questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit – I

- a) Prove that the group □_m × □_n is cyclic and is isomorphic to □_{mn} if and only if m and n are relatively prime.
 - b) If m is a square free integer then prove that every abelian group of order m is cyclic.
 - c) Write all abelian groups of order 32.

P.T.O.

- K21P 4209
 - 8. a) Let X be a G-set and x ∈ X. Prove that |G_x| = (G : G_x). Also show that if |G| is finite, then |G_x| is a divisor of |G|.
 - b) Let X be a G-set and $Y \subseteq X$ and $G_Y = \{g \in G | gy = y \text{ for all } y \in Y\}$. Show that G_Y is a subgroup of G.
 - 9. a) State and prove First Sylow Theorem.
 - b) Prove that every group of order p², where p is a prime, is abelian.

Unit – II

- Prove that any integral domain D can be enlarged to a field F such that every element of F can be expressed as a quotient of two elements of D.
- a) Prove that two subnormal (or normal) series of a group G have isomorphic refinements.
 - b) Write all composition series of \mathbb{Z}_{48} .
- 12. a) Let G ≠ {0} be a free abelian group with finite basis. Prove that every bases of G is finite and all basis of G have the same number of elements.
 - b) Show that Q under addition is not a free abelian group.

Unit – III

- 13. a) Let F be a subfield of a field E and α be any element of E. Prove that the map φ_α: F[x] →E, defined by φ_α (a₀ + a₁x + ... + a_nxⁿ) = a₀ + a₁α + ... + a_nαⁿ is a homomorphism and φ_{αE} is the identity map.
 - b) Prove that every nonzero polynomial f(x)∈ F[x] of degree n can have at most n zeros in a field F.
- 14. a) State and prove Eisenstein Criterion.
- a) Let R be a commutative ring with unity. Prove that M is a maximal ideal of R if and only if R/M is a field.
 - b) If F is a field, prove that every ideal in F(x) is principal.