K24P 0862

Reg. No.	:		
----------	---	--	--

Name :

Second Semester M.Sc. Degree (CBSS – Supple. (One Time Mercy Chance)/Imp.) Examination, April 2024 (2017 to 2022 Admissions) MATHEMATICS MAT2C07 : Measure and Integration

Time : 3 Hours

Max. Marks : 80

PART – A

Answer any four questions from this Part. Each question carries 4 marks.(4×4=16)

- 1. Define Lebesgue outer measure. Show that $m^*(A) \le m^*(B)$ if $A \subseteq B$.
- Prove that, for any set A and any ε > 0 there is an open set O containing A and such that m*(O) ≤ m*(A) + ε.
- 3. Show that if f is integrable, then f is finite valued a.e.
- Show that here exist a smallest ring and a smallest σ-ring containing a given class of subsets of a space.
- 5. Define measure space and measurable space. Give examples.
- 6. Prove that if $\mu(x) < \infty$ and $0 , then <math>L^q(\mu) \subseteq L^p(\mu)$.

PART – B

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks. (4×16=64)

Unit – I

- 7. a) Prove that the following statements regarding the set E are equivalent.
 - i) E is measurable
 - ii) $\forall \epsilon > 0$, there exists O, an open set, $O \supseteq E$ such that $m^*(O E) \le \epsilon$

P.T.O.

K24P 0862

iii) there exists G, a G_{δ} -set, G \supseteq E such that $m^{*}(G - E) = 0$

iv) $\forall \epsilon > 0$, there exists F, a closed set, F \subseteq E such that m^{*}(E – F) $\leq \epsilon$

v) there exists F, a F_{σ} -set, $F \subseteq E$ such that $m^{*}(E - F) = 0$

- b) Show that every countable set has measure zero.
- a) Show that the class M of Lebesgue measurable sets is a σ-algebra.
 - b) Show that there exists uncountable sets of zero measure.
- a) Prove that Lebesgue outer measure is countably additive on disjoint measurable sets.
 - b) Prove that not every measurable set is a Borel set.

Unit – II

- 10. a) Let f be bounded and measurable on a finite interval [a, b] and let $\varepsilon > 0$. Then show that there exist.
 - i) a step function h such that $\int_{a}^{b} |f-h| dx < \varepsilon$,
 - ii) a continuous function g such that g varnishes out side a finite interval and $\int_{a}^{b} |f-g| dx < \varepsilon$. b) Show that if $\alpha > 1$,

 $\int_0^1 \frac{\sin x}{1 + (nx)^{\alpha}} dx = O(n^{-1}) \text{ as } n \to \infty.$

- 11. a) Show that $H(R) = [E : E \subseteq \bigcup_{n=1}^{n} E_n, E_n \in R].$
 - b) Let f be a bounded function defined on the finite interval [a, b], then prove that f is Riemann integrable over [a, b] if and only if it is continuous a.e.
- a) Show that if μ is a σ-finite measure on R, then the extension μ of μ is also σ-finite.
 - b) If μ is a σ-finite measure on a ring R, then prove that it has a unique extension to the σ -ring S(R).

Unit – III

-3-

- 13. If $1 \le p < \infty$ and $\{f_n\}$ is a sequence in $L^p(\mu)$ such that $||f_n f_m||_p \to 0$ as $n, m \to \infty$, then prove that there exist a function f and a subsequence $\{n_i\}$ such that $\lim f_{n_i} = fa.e.$ Also prove that $f \in L^p(\mu)$ and $\lim ||f_n - f||_p = 0$.
- 14. a) State and prove Holder's Inequality. When does the equality occur? b) If $\rho(f, g) ||f - g||_p$, then prove that, for $p \ge 1$, ρ is a metric on $L^p(\mu)$.
- 15. Let $p \ge 1$ and f, $g \in L^p(\mu)$, then prove that

di (g |^p dµ)^r (? Justify your

When does the equality occur? Justify your answer.