

K23P 0499

Reg. No. :

Name :

II Semester M.Sc. Degree (CBSS – Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) MATHEMATICS MAT 2C 07 : Measure and Integration

PART - A

Time : 3 Hours

Max. Marks: 80

Answer any 4 questions. Each question carries 4 marks.

- 1. Show that every countable set has measure zero.
- Define measurable function. Show that every continuous functions are measurable.
- 3. Let f(x) is function defined on [0, 2] defined by : f(x) = 1 for x rational, if x is irrational, f(x) = -1, then find $\int_0^2 f dx$.
- 4. If A and B are disjoint measurable sets, then show that $\int_{A \cup B} f dx = \int_A f dx + \int_B f dx$.
- 5. Show that $L^{\infty}(X, \mu)$ is a vector space over the real numbers.
- 6. State and prove Minkowski's inequality.

PART - B

Answer any 4 questions without omitting any Unit. Each question carries 16 marks.

Unit – I

- 7. a) Prove that Every interval is measurable.
 - b) Define Borel sets. Show that every Borel set is measurable.
- 8. a) Show that collection of measurable function forms a vector space over real numbers.
 - b) Show that Borel set is a proper subset of Lebesgue Measurable sets.
- 9. a) State and prove Fatou's Lemma.
 - b) Let f and g be non-negative measurable functions. Then show that $\int f dx + \int g dx = \int (f + g) dx$.

K23P 0499

Unit – II

- 10. a) State and prove Lebesgue's Dominated Convergence theorem.
 - b) Let f be a bounded function defined on the finite interval [a, b], then prove that f is Riemann integrable over [a, b] if and only if it is continuous a.e.
- 11. a) Let μ^* be an outer measure on $\mathcal{H}(\mathcal{R})$ and let S^* denote the class of μ^* measurable sets. Then prove that S^* is a σ ring and μ^* restricted to S^* is a complete measure.
 - b) If μ is a σ -finite measure on a ring \mathcal{R} , then show that it has a unique extension to the σ -ring $S(\mathcal{R})$.
- 12. a) Let f be bounded and measurable on a finite interval [a, b] and let ∈ > 0, then show that there exist a continuous function g such that g vanishes outside a finite interval and ∫_a^b |f g|dx < ∈.</p>
 - b) Define σ-finite and complete measure on a ring R. Also show that Lebesgue measure m defined on M, the class of measurable sets of R is σ-finite and complete.

Unit -III

- 13. a) Define L^p Space for $1 \le p \le \infty$. Also show that if $\mu(X) < \infty$ and $0 then show that <math>L^q(\mu) \subseteq L^p(\mu)$
 - b) State and prove Holder's Inequality. When does its equality occurs ?
- 14. a) Let f_n be a sequence of measurable functions, $f_n : X \to [0, \infty]$, such that $f_n(x) \uparrow$ for each x and let $f = \lim_{n \to \infty} f_n$ then prove that $\int f dx = \lim_{n \to \infty} \int f_n d\mu$.
 - b) Let [[X, S, μ]] be a measure space and f a non-negative measurable function. Then prove that φ(E) = ∫_E fdμ is a measure on the measurable space [[X, S]]. Also show that if ∫ fdμ < ∞ then ∀∈ > 0, ∃δ > 0 such that if A ∈ S and μ(A) < δ, then φ(A) < ∈.</p>
- 15. a) If $1 \le p < \infty$ and $\{f_n\}$ is a sequence in $L^P(\mu)$ such that $||f_n f_m||_p \to 0$ as $n, m \to \infty$ then show that there exists a function f and a sequence $\{n_i\}$ such that $\lim_{n \to \infty} f_n = f$ a.e. and $f \in L^P(\mu)$.
 - b) Let f_n be a sequence in $L^{\infty}(\mu)$ such that $||f_n f_m|| \to 0$ as n, $m \to \infty$. Then show that there exists a function f such that $\lim_{n \to \infty} f_n = f$ a.e., $f \in L^{\infty}(\mu)$ and $\lim_{n \to \infty} ||f_n f||_{\infty} = 0$.