	BIS AND SCIENCE	K22U 0414
Reg. No. :	Soft HERARY	
Name :		
VI Semester B.S	Sc. Degree (CBCSS - OBE -	- Regular)

Examination, April 2022 (2019 Admission) CORE COURSE IN MATHEMATICS 6B11 MAT : Complex Analysis

Time : 3 Hours

Max. Marks: 48

PART - A

Answer any four questions. Each question carries one mark.

1. Find the real and imaginary parts of the function $f(z) = \frac{1}{2}$.

- 2. Evaluate $\int_{0}^{1+i} z^2 dz$.
- 3. State Morera's theorem.
- 4. Write the Laurent series for $z^2 e^{\frac{y}{2}}$.
- 5. Find residue of $f(z) = \frac{\sin z}{z^4}$.

PART - B

Answer any eight questions. Each question carries two marks.

- 6. Solve $\cos z = 5$.
- 7. Find the Principal value of In(i).
- 8. Evaluate $\int_{C} \operatorname{Re}(z) dz$, where C : z(t) = t + 2it, $(0 \le t \le 1)$.
- 9. Show that the fundamental region of e^z is $-\pi < y \le \pi$.

10. Find an upperbound for the absolute value of $\int z^2 dz$.

K22U 0414

- 11. State identity theorem for power series.
- 12. Define absolute convergence and conditional convergence.
- 13. Check the convergence of $\sum_{n=0}^{\infty} \frac{(100+75i)^n}{n!}$
- 14. Show that sequence {z_n = x_n + iy_n} converges to c = a + ib if and only if {x_n}. converges to a and {y_n} converges to b.
- 15. State Picard's theorem.
- 16. $\int_{C} \frac{z^3 6}{2z i} dz$ where C is $|z| = \frac{3}{4}$.

PART – C

Answer any four questions. Each question carries four marks.

17. Verify $u = x^2 - y^2 - y$ is harmonic and find the harmonic conjugate of u.

18. Find
$$(1 + i)^{2-i}$$
.

19. State and prove Cauchy's inequality.

20. State and prove Liouville's Theorem.

21. Find radius of convergence of the following.

a)
$$\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} (z-3i)^n$$
.
b) $\left[(-1)^n + \frac{1}{2^n} \right] z^n$.

22. Find residue at poles of the function $f(z) = \frac{9z+i}{z^3+z}$.

23. Classify isolated singularities. Give suitable examples too.

-3-

PART – D

Answer any two questions. Each question carries six marks.

24. a) State and prove necessary condition for differentiability.

b) If f is an analytic function with |f| constant, then show that f is constant.

- 25. a) State Cauchy's Integral Formula.
 - b) $\int_{C} \frac{z^2 + 1}{z^2 1} dz$, where C is |z 1| = 1.
 - c) $\int_{C} \frac{\tan z}{z^2 1} dz$, where C is $|z \pi/2| = \frac{1}{4}$.

26. a) Find Maclaurin's series for $f(z) = \frac{1}{(1+z)^2}$.

- b) Find Taylor's series for $f(z) = \frac{2z^2 + 9z + 5}{z^3 + z^2 8z 12}$.
- 27. a) State and prove Cauchy Residue Theorem.

b) Evaluate $\int_{C} \left(\frac{ze^{\pi z}}{z^4 - 16} + ze^{\frac{\pi}{z}} \right) dz$, where C is the ellipse $9x^2 + y^2 = 9$.