

K23P 1253

Reg. No. :

Name :

I Semester M.Sc. Degree (CBSS – Regular) Examination, October 2022 (2022 Admission) STATISTICS WITH DATA ANALYTICS MST1C03 : Distribution Theory

Time : 3 Hours

Max. Marks: 80

PART – A

Answer all questions. Each question carries 2 marks.

- 1. For the p.m.f P[X = j] = $\frac{a_i \theta^i}{f(\theta)}$, j = 0, 1, 2..., $\theta > 0$, where $a_j \ge 0$ and f $(\theta) = \sum_{j=0}^{\infty} a_j \theta^j$, find the p.g. f of X.
- 2. Let X ~ P (λ_1) and Y ~ P (λ_2). Is X-Y a Poisson random variable with parameter $\lambda_1 \lambda_2$. Justify your answer.
- Define Cauchy distribution. If X has a Cauchy distribution C (1,0), what is the distribution of X².
- 4. Define a Bivariate distribution function.
- 5. If X₁, i = 1,2 ... n follow Exp (λ_1), what is the distribution of Min (X₁, X₂, ..., X_n).
- The p.d.f. of a random variable X is given by f(x) = ke^{-|x|}, -∞ < x < ∞. Find k. Also obtain the characteristic function associated with X.
- 7. Define Central and Non-central F distribution.
- 8. What do you understand by "standard error"? Give the expression for the standard error of the sample mean while sampling from the normal population N(μ, σ²).
 (8×2=16)

P.T.O.

K23P 1253

PART – B

Answer any four questions. Each question carries 4 marks.

- 9. Obtain the Poisson distribution as a limiting case of Negative Binomial distribution.
- 10. Derive the moment generating function of Normal distribution.
- 11. If X and Y are independent and distributed as G (α_1 , β) and G (α_2 , β). Derive the distribution of X+Y.
- 12. Derive the distribution of the range of a random sample of size n from U (0,1) distribution.
- 13. State and prove the lack of memory property of Exponential distribution.
- 14. Show that (X,Y) possesses a bivariate normal distribution if and only if every linear combination of X and Y, i.e., aX + bY, a ≠0, b ≠ 0, is a normal variate. (4×4=16)

PART - C

Answer any four questions. Each question carries 12 marks.

- 15. Define Power series distribution. Identify the members of the family. Also establish a recurrence relation satisfied by the cumulants of this family.
- 16. a) Define Geometric distribution. Find its moment generating function and hence find its mean and variance.
 - b) If X₁, X₂ are i.i.d Geometric random variables, then show that the conditional distribution of X₁ given X₁ + X₂ is uniform.
- 17. If X1, X2 are independent rectangular variates on [0,1], find the distribution of
 - .i) X1/X2
 - ii) X_1X_2
 - iii) $X_1 + X_2$
 - iv) $X_1 X_2$

- 18. Define the non-central Chi-Square statistic and derive its p.d.f. Deduce the p.d.f of the central Chi-Square. State the additive property of then non-central Chi-Square.
- 19. Let X₍₁₎, X₍₂₎, X₍₃₎ be the order statistics of iid random variables X₁, X₂, X₃ having olleg Exponential distribution with parameter β .
 - i) Find the distribution of Let $X_{(1)}$ and $X_{(3)}$.
 - ii) Show that $Y_1 = X_{(3)} X_{(2)}$ and that $Y_2 = X_{(2)}$ are independent.
- e of size independent of the second of the s 20. Let X_1 , X_2 , ... X_n be a random sample of size n from N(μ , σ^2). Show that the sample mean \overline{X} and sample mean S² are independently distributed. $(4 \times 12 = 48)$