

K21U 1832

Reg. No.	:	
----------	---	--

Name :

III Semester B.Sc. Degree CBCSS (OBE) Reg./Sup./Imp. Examination, November 2021 (2019 – 2020 Admission) CORE COURSE IN MATHEMATICS 3B03 MAT : Analytic Geometry and Applications of Derivatives

LIBRARY

050

Time : 3 Hours

Max. Marks: 48

PART – A

Answer any four questions. Each question carries one mark.

- 1. Find the eccentricity of the ellipse $2x^2 + y^2 = 2$.
- 2. Evaluate $\lim_{x\to 0} \frac{\sin 5x}{x}$.
- 3. Find the angle ϕ between the radius vector and the tangent at any point on the curve r= a(1 cos θ).
- 4. Write the formula for finding the radius of curvature for a polar curve $r = f(\theta)$.
- 5. Define asymptote of a curve.

PART – B

Answer any eight questions. Each question carries two marks.

- 6. Find the focus and directrix of the parabola $y^2 = -4x$.
- 7. Find the equation of ellipse with Foci : $(\pm\sqrt{2},0)$ Vertices : $(\pm 2, 0)$.
- 8. Find the critical points for the function $f(x) = 6x^2 x^3$.

K21U 1832

9. Evaluate $\lim_{x \to \pi/2} \frac{\sec x}{1 + \tan x}$.

10. Find the absolute maximum and minimum values of $f(x) = 4 - x^2$, $-3 \le x \le 1$.

11. Determine the concavity of $y = 3 + \sin x$ on $[0, 2\pi]$.

12. Verify Rolle's Theorem for the function $y = e^x (\sin x - \cos x) in (\pi/4, 5\pi/4)$.

13. Find the asymptotes of the curve $x^2y^2 - x^2y - xy^2 + x + y + 1 = 0$.

14. Find p at the origin for the curve $y^4 + x^3 + a(x^2 + y^2) - a^2y = 0$.

15. Find the polar subtangent of the cardioid $r = a(1 - \cos\theta)$.

16. Show that the parabolas $y^2 = 4ax$ and $2x^2 = ay$ intersect at an angle of tan^{-1} (3/5).

PART - C

Answer any four questions. Each question carries four marks.

17. Sketch the hyperbola $y^2 - x^2 = 4$ including asymptotes and foci.

- 18. Find a Cartesian equation for the hyperbola centered at the origin that has a focus at (3, 0) and the line x = 1 as the corresponding directrix.
- 19. A particle is moving along a horizontal coordinate line (positive to the right) with position function $s(t) = 2t^3 14t^2 + 22t 5$, $t \ge 0$. Find the velocity and acceleration.
- 20. Prove that $\lim_{x \to 0^+} (1 + x)^{1/x} = e$.
- 21. Find the equation of the tangent at any point (x, y) to the curve $x^{2/3} + y^{2/3} = a^{2/3}$. Show that the portion of the tangent intercepted between the axes is of constant length.
- 22. Find the angle of intersection of the curves : $r = \sin \theta + \cos \theta$, $r = 2 \sin \theta$.
- 23. Find the asymptotes of $r = a \tan \theta$.

-2-

K21U 1832

PART - D

Answer any two questions. Each question carries 6 marks.

24. Derive the polar equation of a conic with eccentricity e. Also find the directrix of the parabola $r = \frac{25}{10 - 10}$.

$$10+10\cos\theta$$

- 25. Evaluate the following :
 - a) $\lim_{x\to 0} \left(\frac{1}{\sin x} \frac{1}{x}\right)$.
 - b) Find the critical points of $f(x) = x^3 12x 5$ and identify the intervals on which f is increasing and on which f is decreasing.
- 26. Define Evolute. Show that the evolute of the cycloid $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$ is another equal cycloid.
- 27. Find the lengths of the tangent, normal, subtangent and subnormal for the cycloid : x = a(t + sin t), y = a(1 cost).