K22U 1961

Reg. No. :

Name :

V Semester B.Sc. Degree (CBCSS – Supplementary) Examination, November 2022 (2016-18 Admissions) CORE COURSE IN MATHEMATICS 5B05 MAT : Real Analysis

LIERARY

Time : 3 Hours

Max. Marks: 48

SECTION - A

Answer all the questions, each question carries one mark.

- 1. State Supremum property of \mathbb{R} .
- 2. Prove that a sequence in \mathbb{R} can have atmost one limit.
- 3. Prove that $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$ converges.
- 4. Let $I \subseteq \mathbb{R}$ be an interval and let $f : I \to \mathbb{R}$ be increasing on 1. If $c \in I$, prove that f is continuous at c if and only if $j_f(c) = 0$.

SECTION - B

Answer any eight questions, each question carries two marks.

5. Determine the set $B = \{x \in \mathbb{R} : x^2 + x > 2\}$.

6. State and prove Bernoulli's inequality.

7. Let
$$S = \left\{ 1 - \frac{(-1)^n}{n} : n \in \mathbb{N} \right\}$$
. Find inf S and sup S.

8. Use the definition of the limit of a sequence to prove that $\lim_{n \to 1} \left(\frac{2n}{n+1} \right) = 2$.

9. State and prove squeeze theorem.

K22U 1961

- 10. Prove that $\sum_{n=0}^{\infty} r^n$ is convergent if |r| < 1 and divergent if $|r| \ge 1$.
- 11. Establish the convergence or divergence of the series whose nth term is $\frac{n}{(n+1)(n+2)}$
- 12. State and prove Dirichlet's test.
- 13. Prove that Dirichlet's function is discontinuous on R.
- 14. State and prove Bolzano's intermediate value theorem.

SECTION - C

Answer any four questions, each question carries four marks.

- 15. State and prove Archimedean property.
- 16. State and prove nested interval property.
- 17. Let y_n be defined by $y_1 = 1$, $y_{n+1} = \frac{1}{4}(2y_n + 3)$ for $n \ge 1$. Prove that $\lim y_n = \frac{3}{2}$.
- 18. Prove that the p- series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges when p > 1.
- 19. State and prove integral test.

20. State and prove uniform continuity theorem.

SECTION - D

Answer any two questions, each question carries six marks.

- 21. Prove that there exists a positive real number x such that $x^2 = 2$.
- 22. Prove that every contractive sequence is a Cauchy sequence.
- 23. a) State and prove ratio test.

b) Establish the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$. 24. State and prove location of roots theorem.