K21U 4551

Reg. No. :

Name :

V Semester B.Sc. Degree CBCSS (OBE) Regular Examination, November 2021 (2019 Admn. Only) CORE COURSE IN MATHEMATICS 5B06 MAT : Real Analysis – I

LIDRARY

Time: 3 Hours

Max. Marks: 48

PART – A

Answer any four questions. Each question carries 1 mark.

- 1. For $a, b \in \mathbb{R}$ if a + b = 0, then prove that b = -a.
- 2. Find the supremum of the set $\left\{1-\frac{1}{n}: n \in \mathbb{N}\right\}$.
- 3. Show that $\lim_{n \to \infty} \frac{1}{n} = 0$.
- 4. Give an example of a discontinuous function on \mathbb{R} .
- 5. Define sequential criterion for the continuity of a function f on \mathbb{R} . (4×1=4)

PART – B

Answer any eight questions. Each question carries 2 marks.

- 6. State and prove Archimedean property.
- 7. Determine the set $B = \left\{ x \in \mathbb{R} : x^2 + x > 2 \right\}$.
- 8. Let $J_n = \left(0, \frac{1}{n}\right)$ for $n \in \mathbb{N}$, prove that $\bigcap_{n=1}^{\infty} J_n = \emptyset$.
- 9. Prove that a sequence in $\mathbb R$ can have at most one limit.
- 10. Show that a convergent sequence of real numbers is bounded.
- 11. Prove that every convergent sequence is a Cauchy sequence.

P.T.O.

K21U 4551

- 12. If the series $\sum x_n$ converges, then prove that $\lim_{n \to \infty} x_n = 0$.
- 13. Check the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$.
- 14. Show that every absolutely convergent series is convergent.
- 15. Show that the function $f(x) = \frac{1}{x}$ is not bounded on the interval $(0, \infty)$.
- If functions f, g are continuous at a point c, then prove that f + g is also continuous at c. (8×2=16)

Answer any four questions. Each question carries 4 marks.

- 17. Prove that the set of real numbers is not countable.
- 18. State and prove Squeeze theorem.
- 19. State and prove Bolzano Weierstrass theorem.
- Let X = (x_n) and Y = (y_n) that converges to x and y respectively, then prove that X + Y converges to x + y.
- 21. Show that $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- 22. If $X = (x_n)$ is a convergent monotone sequence and the series $\sum y_n$ is convergent, then prove that the series $\sum x_n y_n$ is convergent.
- 23. State and prove preservation of intervals theorem.

 $(4 \times 4 = 16)$

PART – D

Answer any two questions. Each question carries 6 marks.

- 24. Prove that there exists a positive real number x such that $x^2 = 2$.
- 25. State and prove Monotone convergence theorem.
- 26. State and prove D'Alembert's ratio test for series.
- If f : [a, b] → R is a continuous function, then prove that f has an absolute maximum and absolute minimum on [a, b]. (2×6=12)