

Reg. No. :

Name :

I Semester M.Com. Degree (C.B.C.S.S. – O.B.E. – Reg./Supple./Imp.) Examination, October 2024 (2023 Admission Onwards) CMCOM 01C02 : QUANTITATIVE TECHNIQUES AND OPERATIONS RESEARCH

Time : 3 Hours

Max. Marks : 60

 $(5 \times 3 = 15)$

SECTION - A

Answer any five questions. Each question carries three marks.

1. Explain the methodology for simulation process.

- 2. What are the features of a binomial distribution ?
- 3. A single card is chosen at random from a standard deck of 52 playing cards. What is the probability of choosing a king or a club ?
- 4. What is meant by Jockeying, Balking and Reneging ?
- 5. State the multiplication theorem of probability.
- 6. What are the time estimates used in PERT ?

SECTION - B

Answer any three question. Each question carries five marks.

- 7. Differentiate PERT and CPM.
- 8. Explain different phases of Operations Research.
- 9. Solve the following assignment problem to get maximum profit.

			Mach	ines	
		A	В	С	D
	1	35	27	28	37
Job	2	28	34	29	40
	3	35	24	32	28
	4	24	32	25	28

(3×5=15)

P.T.O.

K24P 3864

K24P 3864

- 10. A box contains 5 black, 7 red and 6 green balls. Three balls are drawn from this box one after the other without replacement. What is the probability that the three balls are
 - 1) all black balls
 - 2) of different colours
 - 3) two black and one green black ?
- 11. Draw a network diagram for the project whose activities and their predecessor relationships are given below:

Activity	A	B	CC/	Ď	E/	FX	G	Н	1		K
Predecessor Activity	T.	-	4	A	В	В	0	D	F	H, I	F, G

SECTION - C

Answer any three questions. Each question carries ten marks.

- $(3 \times 10 = 30)$
- 12. A company has three production facilities S1, S2 and S3 with production capacity of 7, 9 and 18 units (in 100s) per week of a product, respectively. These units are to be shipped to four warehouses D1, D2, D3 and D4 with requirement of 5, 8, 7 and 14 units (in 100s) per week, respectively. The transportation costs (in rupees) per unit between factories to warehouses are given in the table below :

DP	D2/0	D3-4-	D4	Supply
19	30	50	10	7
70	30	40	60	9
40	8	70		10
5	8	7	44	34
	19 70 40 5	70 30	70 30 40	70 30 40 60

Minimize the total transportation cost. Use North-West Corner Method (NWCM) to find an initial basic feasible solution.

13. In a certain neighbourhood,90% of children fell ill due to the flu and 10% due to measles, with no other diseases reported. The probability of observing rashes for measles is 0.95 and for the flu is 0.08. If a child develops rashes, find the probability of the child having the flu.

-2-

K24P 3864

14. A project consists of seven activities with the following time estimates. Find the probability that the project will be completed in 30 weeks or less.

-3-

Activity	Predecessor Activity	Optimistic time estimate (days)	Most likely time estimate (days)	Pessimistic time estimate (days)
А		2	5 0	8
В	А	2	3,9	4
С	А	6	8	10
D	A	20 08/00	4	6
E	в <	2 11	6	10
F	С	6	27	8
G	D,E,F	6	8	10

15. Consider the problem of assigning four sales persons to four different sales regions as shown below such that the total sales are maximized.

	V	Sales Region				
		6 1	20	3	4	
Sales person	A	5.	01.4	8	9	
	В	5	Z	9	7	
	CO	70	8	9	~9	
S	D	~ 6	8	111/	1 12	

The cell entries represent annual sales figures in crores of rupees. Find the optimal allocation of the salespersons to different regions.

- 16. Define the following:
 - a) Trial
 - b) Event
 - c) 'Mutually exclusive event
 - d) Exhaustive event
 - e) Independent event.
 - · Also explain different schools of thought on probability.