K23P 0498

Reg.	No.	:	

Name :

II Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) MATHEMATICS MAT 2C 06: Advanced Abstract Algebra

Time : 3 Hours

Max. Marks : 80

PART - A

Answer any 4 questions. Each question carries 4 marks.

- 1. Find $\left[Q\left(\sqrt{2}, \sqrt{3}\right); Q \right]$.
- 2. Find the primitive 5th root of unity in Z,
- 3. Distinguish between primes and irreducibles of an integral domain.
- 4. Is Z[i] is an integral domain ?
- 5. What is the order of $G(Q(\sqrt[3]{2})/Q)$?
- 6. Show that $\sqrt{1+\sqrt{5}}$ is algebraic over Q.

PARTAB

Answer 4 questions without omitting any Unit. Each question carries 16 marks.

Unit – I

7.	a)	Prove that every PID is a UFD.		7
	b)	Prove that $Z\left[\sqrt{-5}\right]$ is an integral domain but not a UFD.		9
8.	a)	State and prove Kronecker's theorem.	12	8
	b)	How could we construct a field of 4 elements ?		8

K2	3P	0498	
9.	b)	State and prove Gauss's Lemma. An ideal in a PID is maximal if and only if p is irreducible. Prove that every Euclidian domain is PID.	6 5 5
		Unit – II	
10.		If α and β are constructible real numbers, then $\alpha + \beta$, $\alpha - \beta$, $\alpha\beta$ and α/β , if $\beta \neq 0$. If E is a finite of characteristic P, then E contains exactly P ⁿ elements for some positive n.	12 4
11.		Prove that trisecting an angle is impossible. Prove that a finite field GF(P ⁿ) of P ⁿ elements exists for every prime power P ⁿ .	8 8
12.	a)	State and prove Conjugation isomorphism theorem.	10
	b)	Define Frobenius automorphism. Also prove that $F_{\left\{\sigma_{p}\right\}}\cong Z_{p}$.	6
		Unit-III	
13.	a)	A Field E, where $F \le E \le K$, is a splitting field over F if only if every automorphism of \overline{F} leaving F fixed maps E onto itself and thus induces an automorphism of F leaving F fixed.	12
	b)	Let $f(x)$ be irreducible in $F[x]$. Then prove that all zeros of $f(x)$ in $\dot{\overline{F}}$ have the same multiplicity.	4
14.	a)	Prove that every finite field is perfect.	12
	b)	Prove that every finite field is perfect. Find the splitting field of $x^3 - 2$ over Q.	4
15.	a)	State the main theorem of Galois Theory.	6
	b)	State and prove Primitive Element theorem.	10

8.2..

14