

K23P 1411

Reg. No. :

Name :

III Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, October 2023 (2020 Admission Onwards) MATHEMATICS MAT3C14 : Advanced Real Analysis

Time : 3 Hours

Max. Marks: 80

PART - A

Answer four questions from this Part. Each question carries 4 marks.

- 1. Distinguish between pointwise boundedness and uniform boundedness of sequence of functions on a set E.
- 2. Define the limit function of sequence $\{f_n\}$ of functions and show that for

m, n = 1, 2, 3, ..., if $S_{m,n} = \frac{m}{m \pm n}$, then $\lim_{n \to \infty} \lim_{m \to \infty} S_{m,n} \neq \lim_{m \to \infty} \lim_{n \to \infty} S_{m,n}$.

- 3. Define beta function.
- 4. Show that the functional equation $\Gamma(x + 1) = x\Gamma(x)$ holds if $0 < x < \infty$.
- 5. Prove that a linear operator A on a finite-dimensional vector space X is one-toone if and only if the range of A is all of X.
- 6. State the implicit function theorem.

 $(4 \times 4 = 16)$

PART

Answer 4 questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit – I

- 7. State and prove the Stone-Weierstrass theorem.
- a) Show that there exists a real continuous function on the real line which is nowhere differentiable.
 - b) If {f_n} is a pointwise bounded sequence of complex functions on a countable set E, then show that the {f_n} has a subsequence {f_{nk}} such that {f_{nk}(x)} converges for every x ∈ E.

K23P 1411

- a) If {f_n} and {g_n} converge uniformly on a set E, then prove that {f_n + g_n} converges uniformly on E.
 - b) If {f_n} and {g_n} are sequences of bounded functions, then prove that {f_n . g_n} converges uniformly on E.
 - c) Suppose {f_n} is a sequence of functions defined on E, and suppose $|f_n(x)| \le M_n$ for $x \in E$ and n = 1, 2, 3, ..., then prove that $\sum f_n$ converges uniformly on E if $\sum M_n$ converges.

Unit – II

- 10. a) Suppose that the series $\sum_{n=0}^{\infty} c_n x^n$ converges for |x| < R, and if $f(x) = \sum_{n=0}^{\infty} c_n x^n$, then prove that the function f is continuous and differentiable in (-R, R), and $f'(x) = \sum_{n=1}^{\infty} nc_n x^{n-1}$ where |x| < R.
 - b) State and prove Taylor's theorem.
- 11. State and prove Parseval's theorem.
- 12. a) If x > 0 and y > 0, then show that $\int_{0}^{1} t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}$.
 - b) If f is continuous (with period 2π) and if ε > 0, then prove that there is a trigonometric polynomial P such that |P(x) - f(x)| < ε for all real x.</p>

Unit – III

- 13. a) Define dimension of a vector space.
 - b) Let r be a positive integer, if a vector space is spanned by a set of r vectors, then prove that dim $X \le r$.
 - c) Show that dim $\mathbb{R}^n = n$.
- 14. a) Define a continuously differentiable mapping.
 - b) Suppose f maps an open set E ⊂ ℝⁿ into ℝ^m. Then prove that f ∈ 𝔅|(E) rif and only if the partial derivatives D_jf_j exist and are continuous on E for 1 ≤ i ≤ m, 1 ≤ j ≤ m.
- 15. State and prove inverse function theorem.

 $(4 \times 16 = 64)$