K22P 1410

III Semester M.Sc. Degree (CBSS – Reg./Sup./Imp.) Examination, October 2022 (2019 Admission Onwards) MATHEMATICS MAT 3C13 : Complex Function Theory

AND SCH

Time : 3 Hours

Max. Marks : 80

PART - A

Attempt any four questions from this Part. Each question carries 4 marks.

- 1. Define the following terms :
 - i) Period module of a meromorphic function
 - ii) Discrete module.
- 2. Show that the series $\sum_{n=1}^{\infty} n^{-z}$ converges uniformly and absolutely on a subset of the complex plane \mathbb{C} .
- 3. Is $\mathbb{C} = \{0\}$ is simply connected ? Justify your answer.
- 4. Is the sets $\{z^*: |z| < 1\}$ and \mathbb{C} are homeomorphic ? Justify your answer.
- 5. Prove that a harmonic function u in [] is infinitely differentiable.
- Given that v₁ and v₂ are two harmonic conjugates of a harmonic function u.
 Prove that v₂ v₁ = c, where c is a constant.

K22P 1410

PART - B

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit – I

- 7. a) Prove the following :
 - i) Let $S = \{z : \text{Re} z \ge a\}$ where a > 1. If $\varepsilon > 0$, then there is a number $\delta > 0$, $0 < \delta < 1$, such that for all $z \in S$, $\begin{vmatrix} \beta \\ \alpha \end{vmatrix} (e^t - 1)^{-1} t^{z-1} dt \end{vmatrix} < \varepsilon$ whenever $\delta > \beta > \alpha$. ii) Let $S = \{z : \text{Re} z \le A\}$ where $-\infty < A < \infty$. If $\varepsilon > 0$, then there is a number k > 1 such that for all $z \in S$, $\begin{vmatrix} \beta \\ \alpha \end{vmatrix} (e^t - 1)^{-1} t^{z-1} dt \end{vmatrix} < \varepsilon$ whenever $\beta > \alpha > k$.
 - b) Prove : A non-constant elliptic function has equally many poles as it has zeroes.
- 8. With the usual notations, prove that :

a)
$$\wp(2z) = \frac{1}{4} \left(\frac{\wp''(z)}{\wp'(z)} \right)^2 - 2\wp(z)$$

b)
$$\wp'(z) = -\sigma(2z) / \sigma(z)^4$$

c)
$$\begin{vmatrix} \wp(z) & \wp'(z) & 1 \\ \wp(u) & \wp'(u) & 1 \\ \wp(u+z) & -\wp'(u+z) & 1 \end{vmatrix} = 0$$

d)
$$\frac{\wp'(z)}{\wp(z) - \wp(u)} = \zeta(z - u) + \zeta(z + u) - 2\zeta(z)$$

- a) Prove that Riemann's zeta function ζ has no other zeroes outside the closed strip {z : 0 ≤ z ≤ 1}.
 - b) Prove that if Re z > 1, then $\zeta(z) = \prod_{n=1}^{\infty} \left(\frac{1}{1 p_n^{-z}} \right)$ where p_n is a sequence of prime numbers.

-2-

Unit – II

-3-

- 10. State and prove Schwarz Reflection Principle.
- 11. a) Let $\gamma : [0, 1] \to \mathbb{C}$ be a path and let $((f_t, D_t) : 0 \le t \le 1)$ be an analytic continuation along γ . Show that $\{(f'_t, D_t) : 0 \le t \le 1\}$ is also a continuation along $\dot{\gamma}$.
 - b) Let (f, D) be a function element which admits unrestricted continuation in the simply connected region G. Prove that there is an analytic function F : G → C such that F(z) = f(z) for all z in D.
 - c) Is the region $\{z \in \mathbb{C} : 1 < |z| < 2\}$ is simply connected ? Justify your answer.
- 12. State and prove the Mittag-Leffler's theorem.

Unit – III

- 13. a) State and prove Jensen's formula.
 - b) State and prove Maximum Principle (Second Version).
- 14. Prove that the Dirchlet problem can be solved in a unit disk.
- 15. a) Define the Poisson kernel $P_r(\theta)$. Prove that $P_r(\theta) = \operatorname{Re}\left(\frac{1 + re^{i\theta}}{1 re^{i\theta}}\right)$.

b) Prove that
$$P_r(\theta) < P_r(\delta)$$
 if $0 < \delta < |\theta| \le \pi$

c) For |z| < 1 let $u(z) = Im\left[\left(\frac{1+z}{1-z}\right)^2\right]$. Show that u is harmonic.