

K24U 0058

Reg. No. :

Name :

Sixth Semester B.Sc. Degree (C.B.C.S.S. – OBE – Regular/ Supplementary/Improvement) Examination, April 2024 (2019 to 2021 Admissions) CORE COURSE IN MATHEMATICS 6B10 MAT : Real Analysis – II

PART -

Time : 3 Hours

Max. Marks: 48

 $(4 \times 1 = 4)$

Answer any four questions. Each question carries one mark.

- 1. Give an example of a step function defined on [1, 4].
- 2. Write norm of the partition P = (0, 5, 7, 9, 10) of [0, 10].
- 3. State additivity theorem.
- 4. Define Gamma function.
- 5. Define ϵ neighborhood of a point x_0 in a metric space (S, d).

PART - B

Answer any eight questions. Each question carries two marks.

6. State non-uniform continuity criteria for a function $f : A \rightarrow \mathbb{R}$.

- Using an example, show that product of monotonic increasing functions need not be increasing.
- 8. Let $f(x) = x^2$, $x \in [0,5]$. Calculate Riemann sum with respect to the partition P = (0, 1, 3, 5), take tags at the left end point of the subintervals.
- 9. Show that value of the integral of a Riemann integrable function is unique.

(8×2=16)

olleg

K24U 0058

-2-

- 10. If f is a Riemann integrable function and $k \in \mathbb{R}$, show that kf is Riemann integrable
 - and $\int_{a}^{b} kf = k \int_{a}^{b} f$.
- 11. Evaluate $\int_{1}^{\infty} \frac{1}{x} dx$.
- 12. Show that B(m, n) = B(n, m).
- 13. Compute Γ(-1/2).
- 14. Find pointwise limit of the sequence of functions (x^n) for $x \in [0,1]$.
- 15. Define a metric d on a set S.
- 16. State Cauchy criterion for convergence for sequence of functions.

PART-C

Answer any four questions. Each question carries four marks.

- $(4 \times 4 = 16)$
- Define uniformly continuous function. Show that f(x) = x² is not uniformly continuous on [0, ∞).
- 18. Show that Riemann integrable functions defined on [a, b] are bounded on [a, b].
- 19. Show that if f, g \in R[a,b], then f + g \in R [a,b] and $\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g$.
- 20. Evaluate $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$.

21. From the definition of beta function, derive B(m, n) = $\int_{0}^{\infty} \frac{y^{n-1}}{(1+y)^{m+n}} dy$.

- 22. Derive $\Gamma(n) = \int_{0}^{\infty} [\log(1/t)]^{n-1} dt$.
- 23. Show that a sequence of bounded functions (f_n) defined on a set A converges uniformly on A to a function f if and only if $||f_n f|| \rightarrow 0$.

K24U 0058

 $(6 \times 2 = 12)$

PART - D

-3-

Answer any two questions. Each question carries six marks.

- 24. a) Define a Lipschitz function. Show that Lipschitz functions are uniformly continuous.
 - b) Show that not every uniformly continuous function is a Lipschitz function.
- 25. State and prove Fundamental theorem of calculus (1st form).
- 26. Show that B(m,n) = $\frac{\Gamma(m) \cdot \Gamma(n)}{(m+n)}$

onBosci

- 27. a) Using an example, show that pointwise limit of a sequence of continuous functions need not be continuous.
 - b) Given that (f_n) is a sequence of continuous functions defined on a set A such that (f_n) converges uniformly to a function f defined on A. Prove that f is continuous on A.