

K19P 0172

Reg. No. :

Name :

IV Semester M.Sc. Degree (Reg.) Examination, April 2019 (2017 Admission Onwards) MATHEMATICS MAT4C15 : Operator Theory

Time : 3 Hours

Max. Marks : 80

PART – A

Answer four questions from this Part. Each question carries 4 marks.

- 1. Let X be a normed space over K. If $A, B \in BL(X)$ and $k \neq 0$, then prove that $k \in \sigma(AB)$ if and only if $k \in \sigma(BA)$.
- 2. $x_n \rightarrow^w x$ and $y_n \rightarrow^w y$ in a normed space X then show that $x_n + y_n \rightarrow^w x + y$.
- 3. Interpret uniform convexity geometrically.
- 4. Define numerical range of an operator on a Hilbert space and prove or disprove that it is closed subset of K.
- 5. Let E be a measurable subset of \mathbb{R} and $H = L^2(E)$. Fix z in $L^{\infty}(E)$ and define $A(x) = zx, x \in H$. Show that A is normal.
- Let u₁, u₂,... constitute an orthonormal basis for H. Suppose that A ∈ BL(H) is defined by a matrix M with respect to u₁, u₂,... Assume that M is triangular. Then show that A is normal if and only if M is diagonal. (4×4=16)

PART – B

Answer four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit – I

7. a) Let X be a normed space and $A \in BL(X)$ be of finite rank. Then show that $\sigma_{e}(A) = \sigma_{a}(A) = \sigma(A)$.

b) Let X a Banach space. If A, $B \in BL(X)$, A is invertible and $c = ||(A - B)A^{-1}|| < 1$,

then show that B is invertible, $B^{-1} = A^{-1} \sum_{n=0}^{\infty} \left[(A - B) A^{-1} \right]^n, \|B^{-1}\| \le \frac{\|A^{-1}\|}{1 - \epsilon}$ and $\|B^{-1} - A^{-1}\| \le \frac{\|A^{-1}\|}{1 - \epsilon}$.

P.T.O.

K19P 0172

- 8. a) State and prove Spectral radius formula.
 - b) Let X be a normed space. Then prove that if X' is separable, so is X.
- 9. a) Show that the dual of c_0 with the norm $\|.\|_{\infty}$ is linearly isometric to l^1 .
 - b) Let X be a normed space and {x_n} be a sequence in X. Then prove that {x_n} is weak convergent in X if and only if
 - i) (x_n) is a bounded sequence in X and
 - ii) there is some $x \in X$ such that $x'(x_n) \rightarrow x'(x)$ for every x' in some subset of X' whose span is dense in X'.

Unit – II

- 10. a) Let X be a Banach space which is uniformly convex in some equivalent norm. Then prove that X is reflexive.
 - b) Define compact linear map and give an example.
- 11. a) Let X and Y be normed spaces and F : ∈ BL(X, Y). If F ∈ CL(X, Y), then prove that F' ∈ CL(Y'.X'). Also prove the converse if Y is a Banach space.
 - b) Let X be normed space and $A \in CL(X)$, and $0 \neq k \in K$. If (x_n) is a bounded sequence in X such that $A(x_n) kx_n \rightarrow y$ in X, then prove that there is a subsequence (x_n) of (x_n) such that $x_{nj} \rightarrow x$ in X and A(x) kx = y.
- 12. a) Let X be a linear space, A : X \rightarrow X linear and A(x_n) = k_nx_n for some 0 \neq x_n \in X and k_n \in K, n = 1, 2.... Let k_n \neq k_m whenever n \neq m. Then prove that {x₁, x₂, ...} is linearly independent subset of X.
 - b) Let X be a normed space and A ∈ CL(X). Then prove that every eigenspace of A corresponding to a nonzero eigenvalue of A is finite dimensional.

Unit – III

- 13. a) Define invertible operator. Also give an example of an invertible operator.
 - b) Let H be a Hilbert space. Consider A ∈ BL(H). Then prove that Z(A) = R(A*)[⊥] and Z(A*) = R(A)[⊥]. Also prove that A is injective if and only if R(A*) is dense in H, and A* is injective if and only if R(A) is dense in H.
 - c) Define self-adjoint operator and give an example.

14. a) Let H be a Hilbert space. Consider $A \in BL(H)$ and A be self adjoint. Then prove that $||A|| = \sup\{|\langle A(x), x \rangle| : x \in H, ||x|| \le 1\}$.

-3-

- b) Let H be a Hilbert space and (A_n) be a sequence in BL(H) and A ∈ BL(H) be such that || A_n – A || → 0 as n → ∞. If each A_n is self adjoint unitary or normal, then prove that A is self adjoint, unitary or normal respectively.
- 15. a) Let H be a Hilbert space and A \in BL(H). Then prove that $\sigma_e(A) \subset \sigma_a(A)$ and $\sigma(A) = \sigma_a(A) \cup \left\{ k : \bar{k} \in \sigma_e(A^*) \right\}$.
 - b) Let H be a finite dimensional Hilbert space over K and A \in BL(H). Suppose that there is an orthonormal basis for H consisting of eigen values of A. Then prove that A is a normal operator. If K = \mathbb{R} , then prove that A is in fact a self adjoint operator. (4×16=64)