

Reg. No. :

I Semester M.Sc. Degree (CBSS – Supplementary)
Examination, October 2024
(2021 and 2022 Admissions)
MATHEMATICS
MAT1C04 : Basic Topology

Time: 3 Hours

Max. Marks: 80

1 Alter

Answer four questions from this part. Each question carries 4 marks.

- 1. Let (X, d) be a metric space, let $x \in X$ and let $\epsilon > 0$. Prove that $A = \{y \in X : d(x, y) \le \epsilon\}$ is a closed subset of X.
- Prove that every second countable space is separable. Is the converse true? Justify your answer with an example.
- 3. Let (A, \mathcal{T}_A) be a subspace of a topological space (X, \mathcal{T}) . Prove that a subset C of A is closed in (A, \mathcal{T}_A) if and only if there is a closed subset D of (X, \mathcal{T}) such that $C = A \cap D$.
- 4. Let (X₁, I) and (X₂, I₂) be topological spaces, and let (X₁ × X₂, I) be the product space. Prove that the projection maps are continuous. Also show that the product topology is the smallest topology for which both projections are continuous.
- A topological space (X, F) is connected if and only if no nonempty proper subset of X is both open and closed.
- 6. Define Cantor set.

 $(4 \times 4 = 16)$

PART - B

Answer four questions from this part without omitting any Unit. Each question carries 16 marks.

Unit - I

- a) Let {𝒪_α : α ∈ Λ} be a collection of topologies on a set X. Prove that ∩ {𝒪_α : α ∈ Λ} is a topology on X.
 - b) Let X be a set and let $\mathscr S$ be a collection of subsets of X such that $X = \bigcup \{S : S \in \mathscr S\}$. Prove that there is a unique topology $\mathscr S$ on X such that $\mathscr S$ is a subbasis for $\mathscr S$.
 - c) Let X = {1, 2, 3, 4, 5} and \(\mathcal{S} = \{\{1\}, \{1, 2, 3\}, \{2, 3, 4\}, \{3, 5\}\}\). Prove that \(\mathcal{S} \) is a subbasis for a topology on X. Also find \(\mathcal{S} \).
- 8. a) Let A and B be subsets of a topological space (X, F). Prove that :
 - i) A is open if and only if A = int A.
 - ii) int (A) \subseteq int (B) whenever A \subseteq B.
 - iii) int $(A \cap B) = int (A) \cap int(B)$.
 - iv) int (A) \cup int (B) \subseteq int (A \cup B).
 - b) Let $n \in \mathbb{N}$ and \mathscr{T} is the usual topology on \mathbb{R}^n . Prove that $(\mathbb{R}^n, \mathscr{T})$ is second countable.
- 9. a) Let (X, F) be a topological space, Let A ⊂ X and let x ∈ X. Prove that
 - i) if there is a sequence of points of A that converges to x, then $x \in A$.
 - ii) if (X, \mathcal{T}) is first countable and $x \in \overline{A}$, then there is a sequence of points of A that converges to x.
 - b) Let (X, d) be a complete metric space and let A be a subset of X with subspace metric P = d|_(A × A). Prove that (A, P) is complete if and only if A is a closed subset of X.
 - c) Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces and let $f: X \to Y$. Suppose (X, \mathcal{T}) is first countable and for each $x \in X$ and each sequence $\langle x_n \rangle$ such that $\langle x_n \rangle \to x$, the sequence $\langle f(x_n) \rangle \to f(x)$. Then prove that f is continuous.

Unit - II

- a) Prove that the topological properties Hausdorff and metrizability are hereditary.
 - b) Let $\{(X_{\alpha}, \mathscr{T}_{\alpha}) : \alpha \in \Lambda\}$ be an indexed family of first countable spaces and let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$. Prove that (X, \mathscr{T}) is first countable if and only if \mathscr{T}_{α} is the trivial topology for all but a countable number of α .
- 11. a) Give an example to show that separability is not hereditary.
 - b) State and prove Pasting lemma.
 - c) Let (X_1, \mathcal{I}_1) and (X_2, \mathcal{I}_2) be topological spaces, and for i = 1, 2 let \mathcal{B}_i be bases for \mathcal{I}_i . Then prove that $\mathcal{B} = \{U \times V : U \in \mathcal{B}_1 \text{ and } V \in \mathcal{B}_2\}$ is a basis for the product topology \mathcal{I}_i on $X_1 \times X_2$.
- 12. a) Let $\{(X_{\alpha}, \mathscr{T}_{\alpha}) : \alpha \in \Lambda\}$ be an indexed family of topological spaces, and for each $\alpha \in \Lambda$, let $(A_{\alpha}, \mathscr{T}_{A\alpha})$ be a subspace of $(X_{\alpha}, \mathscr{T}_{\alpha})$. Then prove that the product topology on $\prod_{\alpha \in \Lambda} A_{\alpha}$ is the same as the subspace topology on $\prod_{\alpha \in \Lambda} A_{\alpha}$ is determined by the product topology on $\prod_{\alpha \in \Lambda} X_{\alpha}$.
 - b) Let $\{(Y_{\alpha}, \mathscr{U}_{\alpha}) : \alpha \in \Lambda\}$ be an indexed family of topological spaces. Let \mathscr{U} be the product topology on $Y = \prod_{\alpha \in \Lambda} Y_{\alpha}$, let (X, \mathscr{T}) be a topological space, and let $f: X \to Y$ be a function. Prove that f is continuous if and only if π_{α} of is continuous for each $\alpha \in \Lambda$.

Unit - III

- 13. a) Let $\mathscr T$ be the usual topology on $\mathbb R$. Prove that $(\mathbb R,\mathscr T)$ is connected.
 - b) State and prove intermediate value theorem.
 - c) Prove that the Cantor set is totally disconnected.

K24P 4043

- 14. a) Prove that the fixed point property is a topological invariant.
 - b) Prove that the topologist's sine curve is not pathwise connected.
- 15. a) Let $\{(A_{\alpha}, \mathscr{T}_{A\alpha}) : \alpha \in \Lambda\}$ be a collection of connected subspaces of a topological space (X, \mathscr{T}) and let $A = \bigcup_{\alpha \in \Lambda} A_{\alpha}$. Then prove that
 - i) If $\cap_{\alpha \in \Lambda} A_{\alpha} \neq \emptyset$ then (A, \mathscr{T}_A) is connected.
 - ii) If $\Lambda = \mathbb{N}$ and $A_n \cap A_{n+1} \neq \emptyset$ for each $n \in \mathbb{N}$, then (A, \mathcal{T}_A) is connected.
 - b) Prove that a topological space (X, I) is locally connected if and only if each component of each open set is open.
 - c) Prove that every 0-dimensional T₀ space is totally disconnected. (4×16=64)

