K24U 1639

Reg. No. :

Name :

Second Semester B.Sc. Degree (CBCSS – OBE-Regular/Supplementary/ Improvement) Examination, April 2024 (2019 Admission Onwards) COMPLEMENTARY ELECTIVE COURSE IN STATISTICS 2C02STA(G&P) : Statistical Methods

Time : 3 Hours

Instruction : Use of calculators and statistical tables are permitted.

PART - A

Answer all questions. Each carries 1 mark.

- 1. Define Correlation.
- 'Two independent variables are uncorrelated'. State whether it is True or False.
- 3. At what point, the two lines of regression intersect ?
- 4. Define Index Number.
- 5. Define Time Series.
- 6. Define Crude Death Rate.

PART - B

Answer any 6 questions. Each carries 2 marks.

- 7. Define Spearman's rank correlation coefficient.
- Describe the relation between correlation coefficient and regression coefficient.
- 9. What do you mean by Quantity Index Number ?
- 10. Describe additive model in a Time series.

(6×1=6)

Max, Marks: 40

 $(6 \times 2 = 12)$

K24U 1639

- 11. What are the uses of vital statistic ?
- 12. Enumerate the different types of Correlation.
- 13. Define vital events with examples.
- 14. Write down any two uses of Index Numbers.

PART – C

ollegi

-2-

Answer any 4 questions. Each carries 3 marks.

- 15. Explain (i) Scatter diagram (ii) Karl Pearson's correlation coefficient.
- The two regression lines are 3X + 2Y = 26 and 6X + 3Y = 31. Find the correlation coefficient.
- 17. Explain the concept of (i) Secular trend (ii) Irregular variation.
- 18. Define (i) Crude Birth Rate (ii) Infant Mortality Rate (iii) Net Reproduction Rate.
- Show that correlation coefficient is independent of change of origin and scale.
- 20. Describe moving average method of measuring trend in time series data.

PART – D

Answer any 2 questions. Each carries 5 marks.

 $(2 \times 5 = 10)$

 $(4 \times 3 = 12)$

21. Consider the following bivariate data set (X, Y)

X	1	3	4	5	7	8	10
• Y	2	6	8	10	14	16	20

- i) Calculate regression coefficients.
- ii) Using regression coefficients, obtain correlation coefficient.
- iii) Fit a regression line of X on Y.
- iv) Predict the value of X when Y = 24.

onBo

K24U 1639

22. Compute the coefficient of correlation between X and Y presented in the table given below :

-3-

X	1	3	4	6	8	9	11	14
Y	1	2 ·	4	4	5	7	8	9

23. Calculate Laspeyer's and Paasche's price index numbers from the following data :

Commodity	Price in base year (P ₀)	Price in current year (P ₁)	Quantity in base year (q ₀)	Quantity in current year (q ₁)	
А	20	8-0	40	6	
В	50	0 10	60	5	
С	40	15	0.50	15	
D	20	20	20	25	

24. Using the following data, fit a trend line by method of semi-averages :

1

16

17

Year	1990	1991	1992	1993	1994	1995	1996
Output	700	900	1100	900	1200	1000	1600