

K24P 1406

Reg. No.	:
Name :	

Second Semester M.C.A. Degree (CBSS – Reg./Supple./Imp.) Examination, May 2024 (2020 Admission Onwards) Stream 6 – Software Engineering MCA 2E01 : OPERATIONS RESEARCH

Time : 3 Hours

Max. Marks : 60

SECTION - A

Answer all questions. Each question carries 2 marks.

- 1. Define degeneracy.
- 2. What is a feasible solution ?
- 3. What are travelling salesman problems ?
- 4. What are the basic assumptions in transportation technique ?
- 5. Define (i) State (ii) Return function.
- 6. What is the concept behind the branch and bound method of solving the integer programming problem ?
- 7. Distinguish between processing time and idle time in sequencing problem.
- 8. What are the advantages of network techniques ?
- 9. Explain Markov chains.
- 10. What are the applications of queuing theory ?

(2×10=20)

P.T.O.

K24P 1406

-2-

SECTION - B

Answer all questions. Each question carries 8 marks.

11. a) Solve graphically

Maximize $Z = 3x_1 + 2x_2$ Subject to $-2x_1 + x_2 \le 1$ $x_1 \le 2$ $x_1 + x_2 \leq 3$ $x_1, x_2 \ge 0$ OR

- b) Solve using two phase method Minimize $Z = x_1 + x_2$ $2x_{1} + x_{2} \ge 4$ $x_{1} + 7x_{2} \ge 7$ $x_{1}, x_{2} \ge 0$ Subject to
- ds of his r N 12. a) A manufacturer wants to ship 8 loads of his product as shown below. Shipping costs are Rs. 10 per load. Find the minimum cost for shipping.

0	De	stinati	оп	Supply
20	1	10		
x	50	30	220	1 /2//
Y	90	45	170	3 6 1
z	250	200	50	LINIA IES
Demand	4	2	2	ONT
	OR			

b) Find the optimum solution to the following assignment problem showing the cost (Rs.) for assigning workers to jobs.

Job х У z А 18 17 16 в 15 13 14 С 19 20 21

-3-

College

K24P 1406

13. a) Solve the following linear integer programming problem graphically.

OR

b) Solve the following problem

Maximize Z = $u_1 \cdot u_2 \cdot u_3$ Subject to $u_1 + u_2 + u_3 = 10$ $u_1, u_2, u_3 \ge 0$

14. a) A project has the following time schedule :

Activity	1 – 2	1-3	1-4	2-5	3-6	3-7	4-6	5 - 8	6-9	7 – 8	8-9
Duration	2	2	M	4	8	5	3	1	5	4	3

Construct the network diagram and compute total float for each activity.

OR

- b) i) What are the steps involved in critical path method ?
 - ii) Define the terms EST, LFT, EFT and LST.
- 15. a) Explain (M/M/1) queuing model.

OR

b) Explain queuing system with the help of a diagram.

(8×5=40)