0020221

Reg. No. :

K19U 3189

Name :

I Semester B.C.A. Degree (CBCSS-Supplementary/Improvement) Examination, November - 2019 (2014- 2018 Admissions) COMPLEMENTARY COURSE IN MATHEMATICS 1C01 MAT- BCA : MATHEMATICS FOR BCA - I

Time : 3 Hours

Max. Marks: 40

SECTION - A

All the first Four questions are compulsory. They carry One mark each.

- 1. The derivative of Sin h⁻¹x is_____
- 2. State Lagrange's theorem.
- The curvature at any on a straight line is _____.
- 4. Write the polar equation of the circle $(x-2)^2 + y^2 = 4$.

SECTION - B

Answer any **Seven** questions from among the questions 5 to 13. These questions carry **Two** marks each.

5. If
$$x = a\cos^3 t \& y = a\sin^3 t$$
 find $\frac{d^2y}{dx^2}$

- 6. If $y = \cos^2 x$ find $\frac{d^n y}{dx^n}$.
- 7. Verify Rolle's theorem for $f(x) = x^2$ in [-1, 1]
- Show that between any two roots of e^x cosx=1 there exist atleast one root of tan x =1.

P.T.O.

K19U 3189

9. Evaluate $\lim_{x \to 0} \frac{x - \log(1 + x)}{1 - \cos x}$

10. If
$$U = e^{xyz}$$
, Check whether $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$

- **11.** Find $\frac{dz}{dt}$ when $z = xy^2 + y^2x$, $x = at^2$, y = 2at
- **12.** Find a polar equation for the conic $y^2 = 4x$
- **13.** Convert the equation $\rho = 5\cos\phi$ into cartesian form.

SECTION-C

Answer any Four questions from among the questions 14 to 19. These questions carry 3 marks each.

14. Differentiate
$$\frac{x^3\sqrt{x^2+4}}{\sqrt{x^2+3}}$$

- **15.** Find $\frac{dy}{dx}$ if $e^y = (\sin x)^x$.
- **16.** Discuss the applicability of Rolle's theorem to the function f(x) = |x| in [-1,1].
- 17. Expand Sinx in powers of x by Maclaurin's theorem.
- **18.** If $U = \log(x^3 + y^3 + z^3 3xyz)$, S. T $\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2} = \frac{-3}{(x + y + z)^2}$.
- **19.** Obtain the cartesian form of the equation $r^2 \sin 2\theta r + 1 = 0$.

SECTION-D

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

- **20.** Expand $e^{a \sin^{-1}}x$ in powers of x upto the terms containing x⁴ by maclaurin's theorem and hence obtain the value of e^{θ}
- **21.** State Rolles theorem. Using it P.T there is no real number k for which the equation $x^3 3x + k = 0$ has two distinct zeros in [0,1]

22. State Euler's theorem on Homogenius functions. If $U = \frac{x^2y^2}{x^2 + y^2}$, as an

application of the theorem, S.T. $x \frac{\partial^2 U}{\partial x \partial y} + y \frac{\partial^2 U}{\partial y \partial x} = \frac{\partial U}{\partial y}$

23. Translate the equation $\phi = \frac{\pi}{4}$ into cartesian and cylindrical equations.