

Reg. No.:

Name :

II Semester B.C.A. Degree (CCSS - Supple./Improv.) Examination, May 2015 (2013 and Earlier Adm.) COMPLEMENTARY COURSE IN MATHEMATICS 2C02 MAT (BCA): Numerical Analysis and Calculus

	The second secon
Fime: 3 Hours	Max. Weightage: 30

- 1. Fill in the blanks.
 - a) Derivative of sinh⁻¹x is _____.
 - b) $\frac{d}{dx}(a^x)$ is ______ via Taylor series method, solve $\frac{dy}{dx}$ evice, borden series rolyst grizu .3

 - d) $\lim_{x\to 0} \frac{1-\cos 2x}{x^2}$ is _____.
- 2. Choose the correct answer.

i)
$$\int_{-\pi/2}^{\pi/2} \sin x \, dx$$
 (chose 2 egar/giew) priwalfol ed) moti neves yna reward.

35 = (0, 1, 2, ½) λ = (1) nexig. (3) both alument relaxiograph asignapa. I prizit.

12. Evaluate
$$\int_{0}^{x} dx$$
 duration respectively in the considering five sub- x (ii) $\int_{0}^{1} (ii) g(e^{x}) dx$ duration $g(e^{x}) = 0$ and $g(e^{x}) = 0$ and

iv)
$$\lim_{x \to 0} \frac{1 - \cos 2x - \sin^2 x + \tan^2 x}{x^2}$$

(-2, -1, 0, 2)

Answer any five from the following. (weightage 1 each)

- 3. Solve $x^3 3x + 1 = 0$ by fixed point iteration method.
- 4. By Newton's method, solve the equation $x^3 + x 1 = 0$.
- 5. Solve $y' = 1 + y^2$, y(0) = 0, by Piccard's method.
- 6. Using Taylor series method, solve $\frac{dy}{dx} = x^2 y$. y(0) = 1 at x = 0.1.
- 7. Differentiate $x \sinh^{-1} x + \coth x + \sqrt{1 x^2}$.
- 8. Evaluate $\lim_{x\to 0} (1+x)^{1/x}$.
- 9. Integrate x³ e^{2x}.
- 10. Evaluate $\int_{00}^{1x} dx dy$.

 $(Wt. 5 \times 1 = 5)$

Answer any seven from the following (weightage 2 each)

- 11. Using Lagrangian interpolation formula, find f(5), given f(1) = 3, f(3) = 0, f(4) = 30, f(6) = 132.
- 12. Evaluate $\int_{0}^{1} x^{3} dx$ using trapezoidal rule considering five sub intervals.
- 13. By Euler's method solve y' = x + y, y(0) = 0, when x = 1, by choosing h = 0.2.
- 14. Solve y' = y, y(0) = 1, h = 0.1 by improved Euler method (3 steps).
- 15. If $x\sqrt{1+y} + y\sqrt{1+x} = 0$, find $\frac{d^2y}{dx^2}$ as a function of x given, $x \neq y$.

- 16. Find $\frac{dy}{dx}$ if $(\sin x)^y = (\sin y)^x$.
- 17. Evaluate $x \to \infty \frac{\lim_{x \to \infty} \frac{e^x}{x^3}$.
- 18. If $I_n = \int \sec^n x \, dx$, show that $(n-1) I_n = \sec^{n-2} x \tan x + (n-2) I_{n-2}$
- 19. Evaluate $\int_{0}^{\pi/2} \sin^4 x \, dx$
- 20. By changing the order of integration evaluate $\int_{0}^{1} \int_{0}^{2-x} xy dx dy$. (Wt. 7× 2=14)

Answer any three from the following (weightage 3 each).

- 21. If $y = \sin(a \sin^{-1} x)$, show that $(1-x^2)y_{n+2} - (2n+1)y_{n+1} - (n^2-a^2)y_n = 0$
- 22. Evaluate $\iiint_{V} (x+y+z+1)^2 dx dy dz$ where v is the volume bounded by $x, y, z \ge 0$, $X + Y + Z \le 1.$
- 23. Using Gauss elimination method, solve $-x_1 + x_2 + 2x_3 = 2$

$$3x_1 - x_2 + x_3 = 6$$

- $x_4 + 3x_2 + 4x_3 = 4$

- $-x_1 + 3x_2 + 4x_3 = 4$
- 24. Using Runge-Kutta method find y(0.8) with h = 0.2, given $\frac{dy}{dx} = x + y$, y(0) = 0.
- 25. Find the inverse of the matrix

$$\begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$$
 by Gauss Jordan method.

 $(Wt. 3 \times 3 = 9).$