

K16U 1227

Reg. No. :

Name :

II Semester B.C.A. Degree (CCSS-Reg./Supple./Improv.) Examination, May 2016 COMPLEMENTARY COURSE IN MATHEMATICS 2 C02 MAT-BCA : Mathematics for BCA – II (2014 Adm. Onwards)

Time: 3 Hours

Max. Marks : 40

 $(4 \times 1 = 4)$

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

1. Give an example of a 3×3 non zero singular matrix.

2. What do you mean by the spectrum of a square matrix A?

3. Find the characteristic polynomial of the matrix $\begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$.

4. Give the adjacency matrix of the complete graph K₃.

SECTION-B

Answer any 7 questions from among the questions 5 to 13. They carry 2 marks each.

5. Find the area of the cardioide $r = a (1 - \cos \theta)$.

- 6. Find the length of the arc of the equiangular spiral $r = ae^{\theta \cot \alpha}$ between the points for which the radii vectors are r_1 and r_2 .
- 7. Find the inverse of $\begin{bmatrix} 3 & 8 \\ 2 & 1 \end{bmatrix}$.

8. Find the eigen values of the matrix $\begin{bmatrix} 5 & -2 \\ 9 & -6 \end{bmatrix}$.

P.T.O.

- 9.4 Give two non-zero matrices A and B such that AB = 0 but $BA \neq 0$.
- 10. Prove that the determinant of an orthogonal matrix has value +1 or -1.
- 11. Show that every cubic graph has an even number of vertices.
- 12. Show that the partition P = (6, 6, 5, 4, 3, 3, 1) is not graphic.
- Show by example that there are graphs G such that both G and G are connected. (7×2=14)

SECTION-C

Answer any 4 questions from among the questions 14 to 19. They carry 3 marks each.

- 14. Find the area of the region lying above the x-axis and included between the circle $x^2 + y^2 = zax$ and the parabola $y^2 = ax$.
- 15. Evaluate $\iint xydxdy$ over the positive quadrant of the circle $x^2 + y^2 = a^2$.
- 16. Evaluate the following determinant by reducing it to triangular form

2 0 - 4 6 4 5 1 0 0 2 6 - 1 - 3 8 9 1

17. Find the eigen vectors of $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 4 & 0 \\ 6 & 4 & 2 \end{bmatrix}$

18. Using Cayley Hamilton theorem, find the inverse of the matrix $\begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{bmatrix}$.

19. Prove that any self complementary graph has 4n or 4n + 1 vertices. (4×3=12)

-2-

SECTION - D

Answer any 2 questions from among the questions 20 to 23. They carry 5 marks each.

- 20. Find the intrinsic equation of the parabola y² = 4ax, origin being taken as the fixed point.
- 21. Solve by Gauss elimination method

$$3x + 7y - 4z = -46$$

5w + 4x + 8y + z = 7

8w + 4y - 2z = 0

-w + 6x + 2z = 13

- 22. Diagonalize the matrix
 - $\begin{bmatrix} 7.3 & 0.2 & -3.7 \\ -11.5 & 1.0 & 5.5 \\ 17.7 & 1.8 & -9.3 \end{bmatrix},$

23. Let G_1 be a (p_1, q_1) graph and G_2 be a (p_2, q_2) graph. Then prove the following :

i) $G_1 \cup G_2$ is a (p₁+ p₂, q₁ + q₂) graph

- ii) $G_1 + G_2$ is a $(p_1 + p_2, q_1 + q_2 + p_1 p_2)$ graph
- iii) $G_1 \times G_2$ is a $(p_1 p_2, q_1 p_2 + q_2 p_1)$ graph
- iv) $G_1 [G_2]$ is a $(p_1 p_2, p_1 q_2, + p_2^2 q_1)$ graph.

 $(2 \times 5 = 10)$