

eg.	N	lo.	•	 	 	••••	•••••	
am	e	: .		 	 			

III Semester B.A./B.Sc./B.Com./B.B.A./B.B.A. T.T.M./B.B.M./B.C.A./ B.S.W./B.A. Afsal-UI-UIama Degree (CCSS Reg./Supple./Improv.) Examination, November 2012 COMPLEMENTARY COURSE IN MATHEMATICS (For BCA) 3CO3 MAT (BCA) : Probability Distributions and Statistical Inference

ime: 3 Hours

Max. Weightage: 30

Answer all questions. Weightage for a bunch of four questions is 1.

- 1. Fill in the blanks :
 - a) Let Ω be the sample space, then probability of Ω is _____
 - b) What is the variance of a Poisson distribution with parameter χ ?

 - d) Write the test statistic for testing population mean when population variance σ^2 is known
 - e) If two variables are perfectly positive correlated then the value of correlation coefficient is _____

f) Geometric mean of regression coefficient is _____

- g) What is the value of skewness (β_1) for the normal distribution ?
- h) Row sum of a trancision probability matrix is _____ (Wt. 2×1=2)

Answer any 6 questions (Weightage 1 each).

- 2. Derive the mean of a Poisson distribution.
- 3. For a Binomial random variable X with parameters n = 10 and p = $\frac{1}{3}$

Find 1) P(X = 0) 2) P(X > 9).

M 2322

- 4. Define Type I and Type II errors in testing of hypothesis.
- 5. What are the properties of a normal curve ?
- 6. What is a scatter diagram ?
- 7. What are the assumptions of t-test?
- 8. What are the postulates of Poisson Process ?
- 9. What are the classification of stochastic process ?
- 10. Define Birth and Death process.

Answer any 7 questions (Weightage 2 each).

- 11. Let x is a normal variate with mean 30 and S.D.S. Find
 - 1) $P(26 \le X \le 40)$ 2) $P(X \ge 45)$
- 12. Write short notes on :
 - a) Normal random variable b) Most powerful test
- 13. Explain the test procedure for testing single mean when S.D is unknown (n < 30).

-2-

(Wt. 6×1;

21

24

8

9

- 14. Test the hypothesis that $\sigma = 10 \text{ vs } \sigma > 10$, given that sample S.D S =15 for a 22 sample of size 30 from a normal population ($\alpha = 0.05$).
- 15. Sample of two type of light bulbs were tested for length of life and the following data were obtained.

¢	Type I	Type II		
Sample No.	8	7		
Sample Mean	1234 hrs.	1036 hrs.		
Sample S.D	36 hrs.	40 hrs.		

Test at 5% level, whether or not the avg. length of life are same.

- 16. Explain the method of least squares. Using method of least squares fit $y = ab^{x}$.
- 17. In a correlation analysis the following data are obtained v(x) = 9.

8x - 10y + 66 = 0 and 40x - 18y = 214.

Find 1) Mean of X and Y

2) Correlation coefficient between X and Y.

- 8. What are the characteristics of a Queuing system ?
- 9. Consider a M.C $\{X_n\}$ with state space $\{0, 1\}$ has Trancision probability matrix

$$\mathsf{P} = \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$$

Find 1) $P[X_n = 1/X_{n-1} = 0]$ 2) $P[X_2 = 1/X_0 = 1]$

(Wt. 6x1: 20. Suppose that the customers arrives at a Poisson rate of 1 per every 12 minutes and that the service time is exponential at a rate of one service per 8 minutes.

1) What is the average no. of customers in the system ?

- 2) The avergage waiting time in the system.
- 21. Find the rank correlation coefficient for the following data.

X :	6	5	3	10	2	4	9	7	8	1	
Y :	5	8	4	7	10	2	1	6	9	3	(Wt. 7×2=14)

(n < 30).

following

Answer any 2 questions. (Weightage 4 each).

=15 for a 22. Define M/M/I queue and derive the steady state probability.

23. Let X and Y are two variables and

X :	65	66	67	67	68	69	70	72
Y :	67	68	65	68	72	72	69	71
Fir	nd the	e regre	ession	lines o	f X on	Y and	Y on X	

24. From the data given below using Chi-square test check whether there exist any distinction is made in the appointment on the basis of sex. (use $\alpha = 0.05$).

	Sex	Employed	Not Employed	Total	
it $y = ab^x$.	Male	1480	5720	7200	
	Female	120	680	800	
	Total	1600	6400	8000	

(Wt. 2×4=8)