

K17U 2547

Reg. No. :

I Semester B.C.A. Degree (C.B.C.S.S. – Reg./Supple./Improv.) Examination, November 2017 (2014 Admn. Onwards) Complementary Course in Mathematics 1C01 MAT-BCA : MATHEMATICS FOR BCA I

Time: 3 Hours

Max. Marks: 40

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Find the derivative of tanx tanhx.
- 2. Find $\frac{dy}{dx}$ if x = 2t + 3, $y = t^2 1$.
- 3. State Euler's theorem on homogeneous functions.
- 4. In polar coordinates, what shape is described by r = k, where k is a constant ?

 $(1 \times 4 = 4)$

SECTION - B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.

- 5. Find the second derivative of $f(x) = \frac{x-1}{x+2}$.
- 6. Find the derivative of $y = x^{\cos x}$.
- 7. Find the nth derivative of $f(x) = xe^x$.
- 8. Find the Maclaurin expansion of tanhx up to powers of x³.

K17U 2547

9. Let $f(x) = \sqrt{x} - \frac{x}{3}$ on [0, 9]. Verify that the function satisfies all the hypotheses of Rolle's Theorem, then find the values of c that satisfy its conclusion.

-2-

10. Find $\lim_{x \to -2} \frac{x+2}{\log(x+3)}$.

11. If $u = x^2 \tan^{-1} \frac{y}{x} - y^2 \tan^{-1} \frac{x}{y}$; $xy \neq 0$, prove that $\frac{\partial^2 u}{\partial x \partial y} = \frac{x^2 - y^2}{x^2 + y^2}$.

12. If
$$u = \log \sqrt{x^2 + y^2}$$
, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.

13. Find the coordinates of the centre of curvature at (c, c) of the curve $xy = c^2$. (2×7=14)

SECTION - C

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.

- 14. If $y = e^{-x \cos x}$, prove that $y_4 + 4y = 0$.
- 15. Find the regions where f is a) increasing b) decreasing : $f(x) = \frac{x}{(1+x)^2}$.
- 16. Determine lim (cosx)^{1/x²}

0.18

- 17. If $u = \log (x^3 + y^3 + z^3 3 xyz)$, show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{-3}{(x+y+z)^2}$.
- 18. Show that the radius of curvature at any point of the catenary $y = c \cosh \frac{x}{c}$ varies as the square of the ordinate.

19. Describe the graph $\theta = \pi/4$ in cylindrical coordinates. (3×4=12)

K17U 2547

SECTION - D

-3-

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

20. If $y = \sin(m \sin^{-1} x)$, show that $(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + m^2 y = 0$. Hence expand sin m θ in powers of θ .

21. Use Cauchy's mean value theorem to evaluate $\lim_{x \to 1} \int_{-1}^{1} \frac{c}{c}$

$$\lim_{x \to t} \left(\frac{\cos \frac{\pi x}{2}}{\log \frac{1}{x}} \right).$$

22. If $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$, prove that $\frac{d^2y}{dx^2} = \frac{abc + 2fgh - af^2 - bg^2 - ch^2}{(hx + by + f)^3}$.

- 23. a) Convert the point $(1, -1, -\sqrt{2})$ from Cartesian to spherical coordinates.
 - b) Find an equation in spherical coordinates for the surface $3x^2 x + 3y^2 + 3z^2 = 0$.

 $(5 \times 2 = 10)$