

Reg. No.: .....

Name : .....

## Third Semester B.Sc. Degree (CBCSS – Reg./Sup./Imp.) Examination, November 2017 COMPLEMENTARY COURSE IN MATHEMATICS (2014 Admn. Onwards) 3C03 MAT-BCA: Mathematics for BCA – III

Time: 3 Hours Max. Marks: 40

## SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each :

- 1. Find the general solution to yy' + 36x = 0.
- 2. When do we say a second-order ODE is linear?
- 3. Find the Laplace transform of 8 sin 0.2t.
- 4. Give the one-dimensional wave equation.

 $(4 \times 1 = 4)$ 

## SECTION - B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each :

- 5. Test for exactness and solve :  $x^3 dx + y^3 dy = 0$ .
- 6. Solve:  $y'e^{\pi x} = y^2 + 1$ .
- 7. Solve the initial value problem :  $y'x \ln x = y$ ,  $y(3) = \ln 81$ .
- 8. Solve :  $y'' + \pi y' = 0$ , y(0) = 3,  $y'(0) = -\pi$ .
- 9. If  $H(s) = \frac{1}{s(s-a)}$ , find h(t).
- 10. Solve the initial value problem,  $y'' \frac{1}{4}y = 0$ , y(0) = 4, y'(0) = 0, using Laplace transforms.
- 11. Find the Fourier series of the function  $f(x) = x + \pi$  if  $-\pi < x < \pi$  and  $f(x + 2\pi) = f(x)$ .



- 12. Solve for u = u(x, y):  $u_y = 2xyu$ .
- 13. Find the value of c in the one dimensional heat equation such that  $u = e^{-2kt} \cos 8x$  is a solution to it.

 $(7 \times 2 = 14)$ 

## SECTION - C

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each :

- 14. Find the general solution to  $-\pi \sin \pi x \cosh 3y dx + 3 \cos \pi x \sinh 3y dy = 0$ .
- 15. Verify that  $y_1(t) = e^t$  and  $y_2(t) = te^t$  are solutions of y'' 2y' + y = 0 for  $t \in \mathbb{R}$ . Do they constitute a fundamental set of solutions? Justify.
- 16. Solve the initial value problem : 10y'' + 18y' + 5.6y = 0, y(0) = 4, y'(0) = -3.8.
- 17. Using Laplace transform, solve :  $y(t) + \int\limits_0^t (t-\tau) \ y(\tau) \ d\tau = 1$ .
- 18. Find the Fourier series of  $f(x) = x^2$  in the interval  $(0, 2\pi)$ .
- 19. Find the type, transform to normal form and solve :  $xu_{xx} yu_{xy} = 0$ . (4×3=12)

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each :

- 20. Find the general solution to  $y' \sin 2y + x \cos 2y = 2x$ .
- 21. Solve:  $(x^2D^2 2xD + 2I) y = x^3 \sin x$ .
- 22. Applying Laplace transform, solve the following system :

$$\begin{aligned} y_1' &= -4y_1 - 2y_2 + t & y_1(0) &= 5.75, \\ y_2' &= 3y_1 + y_2 - t & y_2(0) &= -6.75 \end{aligned}$$

- 23. Find:
  - a) The Fourier cosine series and
  - b) The Fourier sine series of the function f defined by f(x) = 1; 0 < x < 2. (2×5=10)