

Reg. No. :

LIBRARY

K20U 0887

Name :

IV Semester B.Sc. Degree (CBCSS – Reg./Supple./Imp.) Examination, April 2020 (2014 Admn. Onwards) COMPLEMENTARY COURSE IN MATHEMATICS 4C04 MAT – BCA : Mathematics for BCA – IV

Time : 3 Hours

Max. Marks: 40

SECTION - A

All the 4 questions are compulsory. They carry 1 mark each.

- 1. A random variable X has the density function $f(x) = \frac{c}{1 + x^2} -\infty < x < \infty$. Find the value of the constant c.
- 2. What is an unbalanced transportation problem ?
- 3. Define interpolation.
- 4. Give Euler's iteration formula to solve the differential equation $y' = f(x, y) \ y(x_0) = y_0.$ (4×1=4)

SECTION - B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.

- 5. Find the expectation of the sum of points in tossing a pair of fair dice.
- 6. Prove that Var(X + Y) = Var(X) + Var(Y).
- 7. A random variable X has density function given by $f(x) = \begin{cases} 2e^{-2x} & x \ge 0 \\ 0 & x < 0 \end{cases}$ Use Chebyshev's inequality to obtain an upper bound on $P(|X \mu| > 1)$.
- Solve the following linear programming problem graphically, Minimize z = 4x₁ + 2x₂ subject to the constraints x₁ + 2x₂≥2, 3x₁ + x₂≥3, 4x₁ + 3x₂≥6, x₁ ≥ 0, x₂ ≥ 0.

P.T.O.

K20U 0887

- 9. Explain the characteristics of a standard linear programming problem.
- 10. Find an initial basic feasible solution to the following transportation problem using Matrix minima method.

Market		D,	D ₂	$D_{\mathfrak{z}}$	D_4	Supply
	0,	1	2	3	4	6
Origin	02	4	3	2	0	8
	03	0	2	2	1	10
Demand		4	6	8	6	

- 11. Find a cubic polynomial which takes the following values y(0) = 1 y(1) = 0 y(2) = 1 y(3) = 10.
- Using the data sin(0.1) = 0.09983 and sin(0.2) = 0.19867, find an approximate value of sin(0.15) by Lagrange interpolation.
- 13. Solve by Picard's method $y' = x + y^2$ subject to the condition y = 1 when x = 0. (7x2=14)

SECTION - C

Answer **any 4** questions from among the questions **14** to **19**. These questions carry **3** marks **each**.

- 14. The joint density function of two continuous random variables X and Y is $f(x, y) = \begin{cases} cxy \ 0 < x < 4; & 1 < y < 5 \\ 0 & \text{otherwise} \end{cases}$ Find the value of C and P(1 < x < 2, 2 < y < 3).
- 15. A basic feasible solution to the following transportation problem is given as $x_{11} = 1$, $x_{12} = 10$, $x_{13} = 3$, $x_{23} = 12$ and $x_{31} = 5$. Is it an optimal solution, if not find an optimal solution.

$Destination \to$		D ₁	D ₂	D3	Supply
	0,	6	8	4	14
Origin	02	4	9	3	12
	O ₃	1	2	6	5
Demand		6	10	15	

K20U 0887

- 16. Show that $f(x) = x^3 + 4x^2 10$ has a root in [1, 2] and use the Bisection method to find a root, correct to three decimal places.
- 17. Form a table of difference for the function $f(x) = x^3 + 5x 7$ x = -1, 0, 1, 2, 3, 4, 5. Obtain f(6) from the table.
- 18. Evaluate $\int_{-\infty}^{3} \frac{1}{x} dx$ by Simpson's 1/3 rule with 4 steps.

19. Using Euler's method find y(0.01) y(0.03) given that y' = -y y(0) = 1. (4×3=12)

SECTION - D

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

- 20. The probability function of a random variables X $f(x) = \begin{cases} x^2/81 & -3 < x < 6 \\ 0 & \text{otherwise} \end{cases}$ Find the probability density function for (a) U = X² and (b) U = $\frac{1}{3}(12 - X)$.
- 21. Solve using simplex method Maximize $z = x_1 + x_2$ subject to the constraints
 - $2x_1 + x_2 \le 4 \quad x_1 + 2x_2 \le 3 \quad x_1 \ge 0, \quad x_2 \ge 0.$
- 22. Given $\frac{dy}{dx} = 1 + y^2$ where y = 0 when x = 0. Find y(0.2) and y(0.4) using fourth order Runge Kutta method.

23. From the following table of values of x and y obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1.2.

х	1.0	1.2	1.4	1.6	1.8	2.0	2.2
у	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

 $(2 \times 5 = 10)$