

K16U 0626

Reg.	No.	:	
Name	. :		

IV Semester B.C.A. Degree (CBCSS 2014 Admn.-Regular) Examination, May 2016 COMPLEMENTARY COURSE IN MATHEMATICS 4C04 MAT – BCA : Mathematics for BCA – IV

Time : 3 Hours

Max. Marks: 40

 $(4 \times 1 = 4)$

SECTION - A

All the 4 questions are compulsory. They carry 1 mark each.

- 1. A fair coin is tossed twice. What is the expected number of heads?
- 2. State the Fundamental Theorem of Linear Programming.
- 3. What do you mean by interpolation ?
- 4. What is meant by the backward differences of a function ?

SECTION-B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.

- 5. Let X denote the number of times heads occurs when a fair coin is tossed six times. Compute the variance of X.
- 6. Suppose a random variable X has mean $\mu = 25$ and standard deviation $\sigma = 2$. Use Chebyshev's inequality to estimate P(X \leq 35).
- There are three envelops containing \$ 100, \$ 200 and \$ 6000, respectively. A player selects an envelope and keeps what is in it. Find the expected winnings of the player.
- 8. Let $x_1 = 2$, $x_2 = 4$, $x_3 = 1$ be a feasible solution to the system of equations, $2x_1 - x_2 + 2x_3 = 2$, $x_1 + 4x_2 = 18$. Reduce the given feasible solution to a basic feasible solution.

K16U 0626

- 9. Show that the set of feasible solutions to an L.P.P. is a convex set.
- Give the canonical form of a linear programming problem and explain its characteristics.
- 11. Find an approximate value of a real root of the equation $x^3 2x 5 = 0$, by the bisection method.
- 12. Given $\frac{dy}{dx} = x + y$; y(0) = 0, compute y(0.2) using Euler's modified method.
- 13. Solve the equation $y' = x + y^2$, subject to the condition y = 1 when x = 0 by Picard's method. (7x2=14)

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.

14. Let X be a random variable with distribution :

x	1	2	3
P(X = x)	0.3	0.5	0.2

Find the distribution, mean and standard deviation of the random variable $Y = x^3$.

15. Maximize $z = 4x_1 + 3x_2$ subject to the constraints:

 $2x_1^{}+x_2^{} \leq 1000,\, x_1^{}+x_2^{} \leq \ 800,\, x_1^{} \leq \ 400,\, x_2^{} \leq \ 700,\, x_1^{} \geq 0,\, x_2^{} \geq 0.$

16. Using Lagrange's interpolation formula, find the form of the function y(x) from the following table :

x	0	1	3	4
y	-12	0	12	24

17. Find a real root of the equation $x = e^{-x}$, using the Newton-Raphson method.

 $(4 \times 3 = 12)$

- 18. Evaluate I = $\int_{0}^{1} \frac{1}{1+x} dx$ correct to three decimal places using both the Trapezoidal and Simpson's rules with h = 0.5.
- 19. Use Runge-Kutta second-order formula to find y(0.1) and y(0.2), given that

 $\frac{\mathrm{d}y}{\mathrm{d}x} = y - x; \ y(0) = 2.$

SECTION-D

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

- 20. A fair coin is tossed three times. Let X equal 0 or 1 according as a head or a tail occurs on the first toss and let Y equal the total number of heads that occur.
 - a) Find the distributions of X and Y.
 - b) Find the joint distribution of X and Y.
 - c) Determine whether X and Y are independent.
 - d) Find Cov (X, Y).
- 21. Use Vogel's Approximation method to obtain an initial basic feasible solution of the following transportation problem :

	D	Е	F	G	Available
A	11	13	17	14	250
в	16	18	14	10	300
С	21	24	13	10	400
Demand	200	225	275	250	

K16U 0626

22. From the following table of values of x and y, obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for x = 1.6.

x	1.0	1.2	1.4	1.6	1.8	2.0	2.2
у	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

23. Given y'' - xy' - y = 0; y(0) = 1, y'(0) = 0, use Taylor's series method to determine y(0.1), correct to five decimal places. (2×5=10)

-4-